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무인 비행체의 공중 충돌 방지를 위한 시각 기반 능동적 회피 기동 시스템 

A Vision-Based Active Avoidance Maneuver System 

for Mid-Air Collision Avoidance of UAVs 
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초록  

소형 무인 항공기의 보급과 맞물려 활발하게 개발되고 있는 자율 비행 시스템에서의 시급한 과제 중 하나는 

공중 충돌의 예측 및 예방이다. 본 연구에서는 시각 데이터를 활용한 이동 물체 검출 및 추적을 통해 회피기동을 

결정하는 시스템을 개발 및 시험하였다. 이 시스템은 카메라 이동에 따른 영상의 기하학적 구조 변화를 2차원 

변환으로 근사하는 기법을 사용해 적은 연산 자원으로도 높은 저지연 성능을 보인다. 또한 시각 기반 시스템에 

필연적으로 발생하는 잡음을 처리하기 위해 다양한 이미지 연산을 활용하고, 검출 및 추적 알고리즘에 검출 연속성 

기반의 논리적 잡음 필터를 도입하여 오검출 및 탐지 실패의 가능성을 대폭 저감하였다. 이를 통합해 제한된 연산 

자원과 추가적인 센서 장착의 어려움이라는 소형 무인 항공기의 제약 조건을 만족하는 공중 충돌 방지 시스템을 

개발하였다. 
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1. Introduction 

The arrival of high-performance electronic components such as flight controllers and electronic 

speed controllers has led to mass-production and popularization of Unmanned Aerial Vehicles 

(UAVs). While fixed-wing and helicopter-like vehicles dominated in traditional UAVs, multi-rotor 

vehicles recently took the lead due to their low prices, good repairability, highly modular structure, 

and ease of operation. This was possible due to advancements in control engineering and motor 

technologies that enabled flight of vehicles with very simple mechanical structures. UAVs are now 

providing services in areas such as aerial photography, surveillance, site monitoring and delivery (1~3), 

and the market is expected to expand beyond 58 billion dollars by 2026 (4). Various types of UAVs are 

shown in Fig. 1. 

Lately, advancements in machine learning methodologies have enabled development of vision-

based spatial and object recognition systems, and this led to an active research trend for autonomous 

flight systems. However, currently available autonomous flight systems of UAVs mostly focus on 

Global Positioning System (GPS)-based waypoint following, and the ability to navigate complex and 

dynamic environments is just under development (6, 7). Drone manufacturers, namely DJI and Skydio, 

have integrated simple autonomous flight systems into their quadrotors (Fig. 2) that can follow 

subjects while avoiding static obstacles at low flight speeds. But they lack the capability to handle 

sudden changes in environments, and the standard function of static obstacle avoidance is still prone 

to failure. 
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Fig. 1. Various body types of UAVs (5) 

 

 

Fig. 2. Skydio(left) and DJI(right)’s autonomous quadrotors 

 

One of the key abilities that autonomous flight systems for small UAVs must achieve is mid-air 

collision avoidance (8). Unlike large aircrafts which generally operate at heights over a kilometer, 

small-scale UAVs which typically operate at altitudes of below a few hundred meters are exposed to 

various thread sources that can lead to mid-air collisions, such as birds (Fig. 3), other small aircrafts 

and ground-launched projectiles. Mid-air collisions are usually accompanied with vehicle damage, 

payload damage or loss and, at worst cases, an unrecoverable fall. In particular, multi-rotor UAVs 

which is the most common form of small aircrafts usually do not possess a way of gliding without 

power, and rotor damage or failure almost definitely leads to an unrecoverable crash. In this context, 

an autonomous collision avoidance system that can detect potential hostile objects and perform 

decision-making for avoidance maneuvers is regarded as a crucial component for autonomous flight 

systems (9, 10). 
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Fig. 3. A crashed multi-rotor UAV after a mid-air collision with an eagle. 

 

Mid-air collision avoidance systems are critically different from static obstacle avoidance systems. 

Those systems mainly focus on mapping the environment and planning a best route without colliding 

with obstacles. However, mid-air collisions typically occur in very short time periods, and rapid 

cognition and response are the most crucial components of mid-air collision avoidance systems. 

Therefore, considerations about computational complexity must be taken into account when 

designing these systems in order to enable rapid and real-time operation. In addition, it is desirable to 

perform cognition with existing on-board sensors such as cameras rather than using additional 

sensors, to minimize impact on payload capacities. 

 

 

2. Research Background and Objective 

A. Collision avoidance systems - sensors 

Collision avoidance systems require means of perceiving potential obstacles, and this is performed 

by one or more types of sensors (11). Typical sensors employed for obstacle recognition include passive 

sensors such as cameras, and active sensors such as RADAR, LiDAR and SONAR. 

Passive sensors, unlike active ones, do not emit electrical or sound waves and instead detect energy 

reflected from objects. A most commonly used type of passive sensor is a camera, which can further 

be classified into monocular, stereo and event-based cameras (12~14). Cameras typically benefit from 

small size and ease of usage but are sensitive to lighting conditions. T.-J. Lee (15) employed inverse 

perspective mapping for object recognition, with the downside of relatively slow operational flight 

speeds. A. U. Haque (16) implemented a fuzzy controller with stereo cameras for obstacle avoidance. 

D. Falanga (17) demonstrated low-latency collision avoidance systems with bio-inspired sensors called 

event cameras. These sensors require no additional image processing operations, making it ideal for 

resource-constrained environments such as UAVs but suffer from very high prices. 

Active sensors emit energy waves that reflects off object surfaces, and measure distances based on 

round-trip times of these waves. They are robust to lighting conditions and have relatively large 

operational range, but usually heavier and less easy to mount than passive sensors. Y.-K. Kwag (18) 

utilized RADAR sensors to obtain position and velocity information about nearby objects and execute 

appropriate maneuvers based on this information. A. Moses (19) developed a prototype of an X-band 

RADAR sensor for obstacle recognition from UAVs. 
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B. Collision avoidance systems - strategies 

Collision avoidance strategies can be categorized into two groups of planning-based avoidance and 

reactive avoidance. Planning-based avoidance aims to build a precise map of the surrounding 

environment and plan an optimal route for collision avoidance. This strategy is usually employed 

during missions, and usually require large computational power. K. Bilimoria (20) proposed a system 

that can analytically plan a best route in 2-D environments. J.-B. Seo (21) devised methods to avoid 

interference with other UAVs in coordinated flights. Ha, Le N (22) proposed a method to calculate a 

threat score for detected objects, set safety boundaries based on this information, and calculate an 

optimal trajectory for avoiding all obstacles. Lin, Zijie (23) calculated safety levels based on perceived 

information and proposed a method to sequentially avoid obstacles. 

Reactive avoidance aims for rapid perception and response to fast-changing environments and 

regard fast and successive avoidance as the highest priority. M. Wang (24) employed a 2-D LiDAR 

sensor for distinguishing stationary and mobile objects and estimate object speeds. S. U. Sharma (25) 

utilized machine learning to detect and avoid certain animals. M. C. Simone (26) utilized SONAR 

sensors and neural net models to estimate objects’ location and perform evasive maneuvers. C. 

Goerzen (2) presented a simple obstacle perception and avoidance system using SONAR and IR 

sensors. Y. Yu (27) combined data from a SONAR sensor and a stereo camera for better object detection 

probabilities. 

 

 

C. Moving object detection with camera sensors 

Camera sensors benefit from their small size and low power consumption and provide an abundance 

of real-world information. However, this information is often highly abstracted, and additional 

processing is required to obtain them. One of the key objectives of vision-based perception algorithms 

is to consume little computational resource as possible. Modern vision-based perception systems are 

not yet capable of robust and general inference capabilities and require further development. 

There are various methodologies for moving object detection from image and video data, including 

statistical, image geometry-based, and machine learning-based methods. K.-M. Yi (28) modeled 

background objects using a dual-mode single gaussian model to categorize background and 

foreground objects. This method is capable of running on a mobile platform. S. Lu (29) compared 

motion vectors of moving and stationary objects to detect moving objects. J.-M. Kim (30) clustered 

optical flow vectors with K-nearest neighbors clustering and distinguished moving objects based on 

cluster variance. Y. Yang (31) trained a Generative Adversarial Network (GAN) to distinguish 

foreground and background pixels. This network is capable of filtering out stationary, background 

pixels, leaving only pixels of moving objects. 

 

D. Research objective 

This research aims to develop and test a perception, prediction, and decision-making system for 
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reactive mid-air collision avoidance. The system utilizes a stereo camera to perform image geometry-

based moving object detection. To meet the low latency requirements of collision avoidance systems, 

a detection algorithm with low computational complexity is devised. This algorithm approximates 

background motion due to camera movement with 2-D perspective transformation and utilizes 

background subtraction to extract regions where a moving object is present. To cope with inevitable 

noise from the approximation process and the visual data itself, various image filters and binarization 

is utilized. Custom-made clustering and tracking modules perceive and track individual objects for 

threat assessment. The distance to an object measured by the stereo camera is used as a criterion for 

decision making. Avoidance maneuvers are performed if the distance to an object falls below 

predetermined safety thresholds. 

To test the system, a quadrotor UAV equipped with a Raspberry Pi 4 low-power computer and a 

Intel RealSense D435i stereo camera is used as a testing platform. Evasive maneuvers from various 

conditions are tested, and the results are used to further optimize the operational parameters to better 

suit flight environments. 

 

 

3. Vision-Based Moving Object Detection Algorithm 

A. Relationship between the 3-D world and 2-D image 

A digital camera captures the 3-D world onto a 2-D image by projecting the light from its lens to 

an image sensor. The sensor quantizes this light to individual brightnesses of red, green, and blue 

colors (Fig. 4). 

 

 

Fig. 4. Image formation of a digital camera 

 

To describe a 3-D world point being projected onto a 2-D image plane, the pinhole camera model 

is widely used. A light ray from a 3-D world point passes through a “pinhole” with no size and reaches 

the image plane, creating a one-to-one correspondence between 3-D and 2-D points. As shown in Fig. 

5, the 2-D location of a projected 3-D point depends on its 3-D coordinates and the focal length f. In 

the case when the image plane is behind the center of projection, the 3-D world appears “flipped”. To 

simplify the understanding, one can instead think of a pinhole camera model with the image plane in 

front of the center of projection. 
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Fig. 5. The standard pinhole camera model(left), and the pinhole camera model with the image 

plane in front of the center of projection(right) 

 

Thus, according to the pinhole camera model, the relationship between a 3-D point P and 2-D point 

p is as follows: 

 

 

[
𝑥
𝑦
1

] ~ [
𝑓𝑥
𝑓𝑦
𝑧

] = [
𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

] ∙ [

𝑋
𝑌
𝑍
1

] 

 

(3.1) 

 

𝑤ℎ𝑒𝑟𝑒 [
𝑥
𝑦
1

] = 𝑝 𝑎𝑛𝑑 [

𝑋
𝑌
𝑍
1

] = 𝑃 

 

The image plane of a digital camera is the image sensor. This sensor is usually rectangular and 

consists of square pixels. As shown in Fig.6, the pinhole camera model sets the origin of a 2-D image 

at its center, while in pixel coordinates, the upper left corner is set as the origin. 

 

 

Fig. 6. The 2-D image plane coordinates(𝒙, 𝒚)and pixel coordinates(𝒖, 𝒗). 
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Thus, the relationship between these two coordinates can be expressed as follows: 

 

 
𝑢 = 𝑢0 + 𝑚𝑥 ∙ 𝑥, 𝑣 = 𝑣0 + 𝑚𝑦 ∙ 𝑦 

(3.2) 

 𝑤ℎ𝑒𝑟𝑒 𝑚𝑥 𝑎𝑛𝑑 𝑚𝑦 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑠.  

In the case when the camera is in motion, it is often convenient to define a reference coordinate 

system that can express 3-D world points and the pose of the camera (Fig. 7). This system is often 

named as the world coordinate system, and its origin can be set arbitrarily. 

 

 

Fig. 7. A 3-D point and the camera, from the world coordinate system. 

 

 

Fig. 8. Compositions of a standard rotation matrix 

 

Transformation from the world coordinate system to the camera coordinate system requires the 

camera pose to be expressed as a translation vector and a rotation matrix. Fig. 8 illustrates the 

composition of a standard rotation matrix. 

Fusion of these formulas yield the following relationship between a 3-D world point and a 

corresponding 2-D pixel. 
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𝑥 = 𝐾[𝑅| − 𝑅𝐶] ∙ 𝑋 

 

(3.3) 

 

𝑤ℎ𝑒𝑟𝑒 𝐾 = [
𝑚𝑥 0 0
0 𝑚𝑦 0

0 0 1

] ∙ [
𝑓𝑥 0 𝑢0

0 𝑓𝑦 𝑣0

0 0 1

]  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥, 

𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

]  𝑖𝑠 𝑡ℎ𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥, 𝑎𝑛𝑑 

𝐶 = [

𝑋𝐶

𝑌𝐶

𝑍𝐶

]  𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟. 

𝑥 𝑎𝑛𝑑 𝑋 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑎𝑛𝑑 𝑤𝑜𝑟𝑙𝑑 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑠𝑦𝑠𝑡𝑒𝑚𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 

 

 

B. Epipolar geometry 

Epipolar geometry is a methodology of describing the relation between two images of a same scene 

taken at different locations. It is utilized in applications such as Structure from Motion (SfM) (Fig. 

9). 

 

 

Fig. 9. Structure from Motion(SfM) 

 

Let a 3-D point P be observed from different points of view A and B, as in Fig. 10. P appears as 

point p on image A, and as point p’ on image B. The points e and e’ on image A and B that intersects 

with the line that connects the two centers of projections are called epipoles. The lines that connects 

e to p and e’ to p’ are called epilines, and they are uniquely determined for a 3-D point. Epilines for 

multiple points intersect at a unique point (Fig. 11). 
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Fig. 10. Epipolar geometry 

 

 

Fig. 11. All epilines for an image intersects at a unique point. 

 

Epipolar geometry can be utilized to geometrically describe camera motion between consecutive 

video frames. Considering that a video from a moving camera is a set of pictures that were taken at 

slightly different locations, epipolar geometry can be applied between these frames. Fig. 12 is an 

example of epilines drawn on video frames taken while the camera is undergoing motion. 

 

 

Fig. 12. Epilines for video frames taken while camera translation(left) and rotation(right) (32). 
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Image points on video frames move along epilines as the camera undergoes motion. That is, the 

scene transition due to camera motion can be described with epipolar geometry. Detailed 

methodology is provided in section 3-F.  

 

 

C. 2-D transformations 

Transformation in image processing refers to a function that maps an arbitrary point to another 

point. The 2-D transformation is a specific example of this, which performs 2-D to 2-D mapping. The 

most general form of 2-D transformation is the projective transformation (Fig. 12), which can be 

interpreted as a transformation that can map an arbitrary quadrangle into another quadrangle. Thus, 

projective transformation can describe the relationship between the two images that observe the same 

planar object. 

 

 

Fig. 12. The projective transformation maps an arbitrary quadrangle into another quadrangle. 

 

The matrix that performs projective transformation is called the homography matrix, and the 

transformation can be defined as follows: 

 

 

[
𝑥𝑡

𝑦𝑡

1
] ~ [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

] ∙ [
𝑥
𝑦
1

] 

 

(3.4) 

 

𝑤ℎ𝑒𝑟𝑒 [
𝑥𝑡

𝑦𝑡

1
]  𝑖𝑠 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚. 

 

 

A homography matrix has 8 degrees of freedom, and at least 4 matches between images are required 

for its computation. Generally, more than 4 matches are processed with outlier rejection techniques 

such as RANSAC (33) or LMedS (34) to yield optimal results. 

In principle, projective transform can only describe planar, or 2-D objects. However, as in Fig. 13, 

if 3-D objects are relatively far away from the camera and the pose difference between viewpoints 

are small, the relationship between the images taken from these viewpoints can be approximated with 

projective transformation. This is a core assumption of the moving object detection system, and the 

details on how to utilize this assumption for background motion modeling is provided in section 3-F. 
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Fig. 13. Approximation and transformation of background change between two viewpoints with 

projective transformation 

 

 

D. Feature point tracking with optical flow 

Optical flow is a methodology of estimating motion vectors of pixels during two consecutive 

frames. It was first suggested by James Gibson during the 1940’s and was thoroughly utilized for 

applications such as object tracking (35) and robot localization (36). Optical flow involves calculation 

of a differential equation called the gradient constraint equation, and methodologies for solving this 

equation separates various optical flow algorithms. Some of the popular methods are Lucas-Kanade 
(37) and Horn-Schunck (38) algorithms. Lucas-Kanade algorithm only tracks specified pixels but 

computationally less complex and accurate. Horn-Schunck algorithm tracks all pixels in a frame but 

with less accuracy and speed. Fig. 14 illustrates the two algorithms in operation. 

 

 

Fig. 14. Lucas-Kanade(left) and Horn-Schunck(right) algorithms in operation 
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Combination of epipolar geometry, projective transform and optical flow enables background 

motion modeling and moving object detection. The detailed procedures are suggested in section 3-F. 

 

 

E. Reducing noise components with image filters 

Image filtering is an image processing technique that utilizes specifically designed filters to perform 

convolution operations on images and replaces pixels with the results (Fig. 15). Various filters exist 

that performs image processing such as smoothing (39) and edge detection (40). 

 

 

Fig. 15. Image filtering 

 

The proposed system utilizes median filters for denoising operations during moving object 

detection. As in Fig. 16, median filter sorts pixels in its window in brightness order and replaces the 

center pixel brightness with the median value, making it ideal for eliminating small noise components. 
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Fig. 16. Denoising operation with median filter 

 

In addition, the dilation filter is applied to better reveal moving objects. As in Fig. 17, the dilation 

filter expands small and thin image components to better visualize them. 

 

 

Fig. 17. Application of the dilation filter on a binary image 

 

 

F. Moving object detection from a mobile camera 

The mid-air collision avoidance system that this paper proposes consists of four operational stages: 

[Detection], [Recognition], [Tracking], and [Decision making]. The [Detection] stage detects regions 

of moving objects in the camera’s field of view. A pseudocode of this stage is given in algorithm 1. 

 

Algorithm 1 Independent moving object detection 

Input: 𝑰𝒕−𝟏, 𝑰𝒕, 𝑰𝒕+𝟏, 𝑯𝒕−𝟏,𝒕                 ►Three consecutive image frames and the homography matrix 

between previous and current frame 

Output: 𝑹𝒕                    ►Binary image that displays the region where moving objects are present 
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1: 𝑭𝑷 ←  [0 0 0 0 0 0]         ►Number of feature points for edge areas, where optical flow is calculated 

2: 𝑖 =  0 

3: 𝒘𝒉𝒊𝒍𝒆 𝑖 <  6: 

4:     𝑭𝑷[𝑖]  ←  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑰𝒕[𝑖]           ► Number of feature points for an edge area 

5:     𝑖𝑓 𝑭𝑷[𝑖] < 𝑛:                                     ►Threshold to search for new feature points 

6:         𝐹𝑖𝑛𝑑 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑛 − 𝑭𝑷[𝑖] 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑰𝒕[𝑖] 

7:     𝒆𝒏𝒅 𝒊𝒇 

8: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

9: 𝑶𝑭 ←  𝑜𝑝𝑡𝑖𝑐𝑎𝑙 𝑓𝑙𝑜𝑤 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑰𝒕[𝑖] 𝑎𝑛𝑑 𝑰𝒕+𝟏[𝑖]                           ►Calculate optical flow 

10: 𝑯𝒕,𝒕+𝟏  ←  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ℎ𝑜𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑰𝒕[𝑖] 𝑎𝑛𝑑 𝑰𝒕+𝟏[𝑖] 𝑢𝑠𝑖𝑛𝑔 𝑶𝑭 ►Calculate homography matrix 

11: 𝑹𝒕  ←  𝑎𝑣𝑒𝑟𝑎𝑔𝑒([(𝑰𝒕  −  𝑯𝒕−𝟏,𝒕 ∙ 𝑰𝒕−𝟏)  + (𝑰𝒕+𝟏  −  𝑯𝒕,𝒕+𝟏 ∙ 𝑰𝒕)])             ►Background subtraction 

12: 𝑹𝒕  ←  𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒(𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛(𝑀𝑒𝑑𝑖𝑎𝑛𝐹𝑖𝑙𝑡𝑒𝑟(𝑹𝒕)))            ►Apply denoising filters and binarization 

 

The purpose of homography matrix calculation between consecutive images is to model the 

background scene transition caused by camera motion. As mentioned in section 2-C, if 3-D objects 

are at a relatively far distance and the pose difference between viewpoints are small, the transition 

between two video frames can be approximated as a projective transformation. Fig. 18 visualizes this 

approximation process. 

 

 

Fig. 18. Projective transformation approximation of two consecutive video frames 

 



2021년 항공우주논문상  [전자/전기] 

 

When calculating the homography matrix, the flight conditions of UAVs were taken into 

consideration. From the viewpoint of a flying UAV, objects near the center of the field of view are 

typically further away than those at the edge areas. Considering equation (3.1) from section 3-A, 

further objects appear smaller and thus exhibit lesser magnitudes of appearance transition. Thus, as 

in Fig. 19, objects near the edge of the field of view have greater influence on the perspective 

transformation model and the homography matrix. 

 

 

Fig. 19. Appearance transition comparison of center and edge objects 

 

Therefore, it is reasonable to calculate the homography matrix from the transition of pixels that are 

near the edge of the field of view. In this system, six 70x70 windows were used (Fig. 20). The system 

constantly monitors number of tracked points in these windows and initiates new tracks if the number 

falls below a predetermined threshold. This guarantees even distribution of tracked points and 

guarantees the stability of homography matrix calculation. To filter out false matches and outliers, 

RANSAC (36) was used for homography matrix calculation. Limiting the optical flow calculation 

regions reduced computational requirements and improved approximation accuracy simultaneously. 

 

 

Fig. 20. Six boundary regions where optical flow is calculated 
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The calculated homography matrix is then used for background subtraction. This matrix 

approximately relates pixels from the previous frame to pixels of the current frame. That is, pixels 

from the previous frame can be mapped to coincide with those of the current frame (Fig. 21). 

However, motions of moving objects are not described by the homography matrix and thus cannot be 

mapped to coincide between frames. Therefore, moving objects can be detected by searching for 

regions where pixels are not correctly mapped between consecutive frames. 

 

 

Fig. 21. Mapping of pixels between consecutive video frames 

 

To locate incorrectly mapped pixels and detect moving objects, perspective transform based 

background subtraction technique is employed. First, the homography matrix between two 

consecutive frames is computed. Next, this matrix is used to map pixels of the previous frame to 

match the current frame’s. Then, the transformed frame is subtracted from the current frame. Since 

the background scene and objects are approximately mapped to match the current frame, their 

brightness approximately becomes zero after the subtraction. However, the pixels of moving objects 

are not correctly mapped to the current frame since its motion is different from the background’s. 

That is, their brightness value is nonzero after the subtraction, signifying that image regions of moving 

objects are detected. An example result is shown in Fig. 22. 
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Fig. 22. Original video frame(left) and background subtracted result(right) 

 

However, since the projective transformation approximation is not perfect, noise elements 

inevitably exist. That is, even after background subtraction, some areas of the background may not 

have zero brightness values. To compensate, the proposed system utilizes two methods. 

The first method utilizes the next frame as well as the previous frame for background subtraction. 

Each transformed frame is subtracted from the current frame independently, and then averaged (Fig. 

23). Since noise elements appear randomly and momentarily, this method improves the Signal-to-

Noise Ratio (SNR) of the result image. 

 

 

Fig. 23. Utilizing previous and next frames to improve SNR 

 

The second method applies image filters and binarization to the result image after the first method. 

As mentioned in section 3-E, the median filter eliminates small noise components while the dilation 

filter expands elements, thus revealing moving object regions more clearly. Then the image is 

binarized to ignore pixels below certain brightness threshold. The process is illustrated in Fig. 24. 

After these operations, image regions of moving objects are revealed. However, further processing 

is necessary to recognize the “blobs” as shown in Fig. 25 as a single, independent object. Furthermore, 

additional noise filtering is required to eliminate false positive detections. These procedures are 

presented in section 4. 
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Fig. 24. (From upper left, clockwise) The original frame / background subtracted frame / median 

filtered frame / dilation filtered and binarized frame 

 

 

Fig. 25. A single moving object shows up as “blobs” after these operations. 

 

 

4. Independent Object Recognition, Tracking, and Decision Making 

A. Independent object recognition 

The mid-air collision avoidance system that this paper proposes consists of four operational stages: 

[Detection], [Recognition], [Tracking], and [Decision making]. The [Recognition] stage utilizes a 

clustering algorithm to the result of the [Tracking] stage to determine the number and locations of all 

moving objects. A pseudocode of this stage is given in algorithm 2. 
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Algorithm 2 Independent object recognition 

Input: 𝑹𝒕                                             ►A binary image that contains object regions 

Output: 𝑪𝒕                                                    ►A list of prior object coordinates 

 

1: 𝑪𝒕  ←  ∅ 

2: 𝒇𝒐𝒓 𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐵𝑙𝑜𝑏 𝒊𝒏 𝑹𝒕:                                                 ►A region in 𝑹𝒕 

3:     𝒊𝒇 𝑠𝑖𝑧𝑒(𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐵𝑙𝑜𝑏) < 𝑠𝑖𝑧𝑒𝑇ℎ𝑟𝑒𝑠ℎ: 

4:         𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆                                                     ►Disregard small regions 

5:     𝒇𝒐𝒓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝒊𝒏 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠: 

6:         𝒇𝒐𝒓 𝑏𝑙𝑜𝑏 𝒊𝒏 𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 

7:             𝒊𝒇 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏𝑙𝑜𝑏, 𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐵𝑙𝑜𝑏) < 𝑑𝑖𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ: 

8:                 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒 𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐵𝑙𝑜𝑏 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

9:             𝒃𝒓𝒆𝒂𝒌                                   ►Add region to cluster if below distance threshold 

10:     𝒊𝒇 𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐵𝑙𝑜𝑏 𝑖𝑠 𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑: 

11:         𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒 𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐵𝑙𝑜𝑏 𝑡𝑜 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑎𝑠 𝑐𝑙𝑢𝑠𝑡𝑒𝑟                 ►Set as new cluster 

12: 𝒇𝒐𝒓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝒊𝒏 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠: 

13:     𝑎𝑝𝑝𝑒𝑛𝑑 𝑤𝑒𝑖𝑔ℎ𝑒𝑑 𝑚𝑒𝑎𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑡𝑜 𝑪𝒕    ►Append representative position of blob to 𝑪𝒕  

 

The [Tracking] phase outputs a binary image that displays regions of moving objects as 1. However, 

the presence of noise is inevitable – some background regions show up as value 1, albeit 

intermittently. Additionally, a single independent moving object can appear in several “patches”, as 

in Fig. 25. Therefore, there is need for a method that can reject noise components as well as recognize 

multiple nearby patches as a single object. 

For the proposed system, a modified DBSCAN (Density-Based Spatial Clustering of Applications 

with Noise (41)) clustering algorithm is developed. DBSCAN, unlike center-based algorithms such as 

K-Means (42), determines if a data point belongs to a cluster based on its distances to other points. It 

regards data points with no neighbors as outliers, and data points with more than some number of 

neighbors as inliers. Fig. 25 is a comparison of K-means and DBSCAN. 

 

 

Fig. 25. A comparison of K-means and DBSCAN 
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DBSCAN is used to cluster the “patches” that constitutes the true moving object, in order to 

recognize them as a single object. However, vanilla DBSCAN cannot be directly applied for this task, 

since there are instances where an object shows up as a single patch, and where noise components 

show up as several patches (Fig. 26). 

 

 

Fig. 26. Some edge cases that need to be considered 

 

Thus, the vanilla DBSCAN is modified to utilize the area information of patches. Only patches 

within an area threshold are considered as a true object, and a single patch is considered as a cluster 

if it satisfies the area threshold. The centroid of a cluster is calculated using a weighed sum of all 

patches in that cluster. This procedure is summarized in Fig. 27. 

 

 

Fig. 27. Clustering procedure of the modified DBSCAN algorithm 
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B. Independent object tracking 

The mid-air collision avoidance system that this paper proposes consists of four operational stages: 

[Detection], [Recognition], [Tracking], and [Decision making]. The [Tracking] stage receives the 

objects’ locations at each frame from the [Recognition] stage and associates them to the previous 

frame’s. A unique id is assigned to each independent objects, and their trajectories are monitored for 

threat assessment. This stage also performs further noise compensation. A pseudocode of this stage is 

given in algorithm 3. 

 

Algorithm 3 Independent object tracking 

Input: 𝑶𝒕−𝟏, 𝑪𝒕                                    ►𝑂𝑡−1: object locations and IDs at previous frame 

►𝐶𝑡: object locations at current frame 

Output: 𝑶𝒕                                          ►𝑂𝑡: object locations and IDs at current frame 

 

1: 𝑶𝒕  ←  ∅ 

2: 𝑀 = 𝑠𝑖𝑧𝑒(𝑂𝑡−1)                                          ►number of objects at previous frame 

3: 𝑁 = 𝑠𝑖𝑧𝑒(𝐶𝑡)                                             ►number of objects at current frame 

4: 𝐴𝑟𝑟𝑎𝑦 ← 𝑧𝑒𝑟𝑜𝑠(𝑀, 𝑁)                         ►An array that stores distances between all objects 

5: 𝒇𝒐𝒓 𝑖 𝒊𝒏 𝑂𝑡−1: 

6:     𝒇𝒐𝒓 𝑗 𝒊𝒏 𝐶𝑡: 

7:         𝐴𝑟𝑟𝑎𝑦[𝑖, 𝑗] = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂𝑡−1[𝑖], 𝐶𝑡[𝑗]) 

8: 𝒇𝒐𝒓 𝑘 𝒊𝒏 𝐶𝑡: 

9:     𝒊𝒇 𝐼𝐷[𝑘] 𝒊𝒔 𝒏𝒐𝒕 𝑠𝑒𝑡: 

10:         𝒊𝒇 𝐴𝑟𝑟𝑎𝑦[𝑖, 𝑘] == min (𝐴𝑟𝑟𝑎𝑦[𝑖, ∶]):                      ►object 𝑘: closest object to object 𝑖 

11:             𝒊𝒇  𝐴𝑟𝑟𝑎𝑦[𝑖, 𝑘] < 𝑑𝑖𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ:                                ►if below distance threshold: 

12:                 𝐼𝐷[𝑘] ← 𝐼𝐷[𝑖]                      ►assume 𝑘 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑜𝑏𝑗𝑒𝑐𝑡(tracking 

success) 

13:                 𝑇𝑟𝑎𝑐𝑘𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐼𝐷[𝑘] += 1                                ►Increase tracked length 

14:                 𝒃𝒓𝒆𝒂𝒌 

15:             𝒆𝒍𝒔𝒆: 

16:                 𝑚𝑎𝑟𝑘 𝐼𝐷[𝑖] 𝑎𝑠 𝑙𝑜𝑠𝑡                                  ►Mark as lost if no object is nearby 

17:  𝒇𝒐𝒓 𝑘 𝒊𝒏 𝐶𝑡: 

18:     𝒊𝒇 𝐼𝐷 𝑜𝑓 𝑘 𝒊𝒔 𝒏𝒐𝒕 𝑠𝑒𝑡: 
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19:         𝑎𝑠𝑠𝑖𝑔𝑛 𝑛𝑒𝑤 𝐼𝐷 𝑡𝑜 𝑘                               ►assign new 

𝐼𝐷 𝑖𝑓 𝑛𝑒𝑤 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 

20:         𝑡𝑟𝑎𝑐𝑘𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐼𝐷[𝑘] ← 0 

21:     𝒊𝒇 𝑡𝑟𝑎𝑐𝑘𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐼𝐷[𝑘] > 𝑛𝑜𝑖𝑠𝑒𝑇ℎ𝑟𝑒𝑠ℎ:                   ►If tracked longer than threshold 

22:         𝐼𝐷[𝑘] ← 𝑚𝑎𝑟𝑘 𝑎𝑠 𝑡𝑟𝑢𝑒 𝑜𝑏𝑗𝑒𝑐𝑡                                     ►Approve as true object 

23:     𝑎𝑑𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝐼𝐷 𝑜𝑓 𝑘 𝑡𝑜 𝑶𝒕 

 

The [Tracking] stage exploits temporal information to distinguish true observations from noise, and 

to recognize object identity across multiple frames. It operates on a central assumption that the 

distance that an object travelled between frames is smaller than distances between separate objects. 

Also, since noise components spawn intermittently and momentarily, they do not appear consistently 

across multiple frames. 

Under these assumptions, the tracking procedure is formulated as follows. First, the distances 

between previously detected coordinates and the new coordinates are compared, and the closest new 

detection within a distance threshold is recognized as the new position of the object. If there are no 

new detections within a distance threshold, the object is marked as lost. If no new detections appear 

near its last known location for a time threshold, the object is deleted. New detections with no 

associations are identified as object candidates and are given a temporary ID. If an object candidate 

is successfully tracked for longer than a time threshold, it is approved as a true object and given a 

new ID. This procedure is summarized in Fig. 28. 

 

 

Fig. 28. Tracking procedure of the distance-based tracking algorithm 

 

 

C. Trajectory data refinement 

As in section 4-A, the objects’ representative position is calculated as a weighed mean of cluster 

components. However, this data is inherently indeterministic, and this leads to a noisy trajectory (Fig. 

29) that hinders the operation of the tracking algorithm and the stereo distance estimation.  
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Fig. 29. Noisy trajectory data 

 

This shortcoming is addressed with the Kalman filter. The Kalman filter recursively estimates the 

state of a linear system under noisy observations, providing an optimal statistical prediction of the 

system. It was suggested by Rudolf Kalman in the 1960’s and was exploited extensively in areas such 

as object tracking, localization and state estimation (43). Its operating procedure is illustrated in Fig. 

30. 

 

 

Fig. 30. The recursive operation of the Kalman filter 

 

A Kalman filter is linear or nonlinear depending on the motion and observation models. Linear 

Kalman filters require less computational load at the cost of accuracy, and this filter is exploited for 

the proposed system, since it needs the Kalman filter for simple noise reduction and not precise state 

estimation. A constant-velocity (CV) model is utilized since the motion of an unknown object is 

unpredictable. The observed state is the x and y pixel coordinates of the object. The equations for 

these models are given below. Fig. 31 illustrates the tracking data before and after the Kalman filter 

application. 
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𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝑤𝑘 = [

1 1
0 1

0 0
0 0

0 0
0 0

1 1
0 1

] 𝑥𝑘−1 + 𝑤𝑘  

(4.1) 

 𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 = [
1 0
0 0

0 0
1 0

] 𝑥𝑘 + 𝑣𝑘 (4.2) 

 

 

Fig. 31. Before(left) and after(right) Kalman filter application. Trajectory is displayed in red dots. 

 

 

D. Decision making for avoidance maneuvers 

The mid-air collision avoidance system that this paper proposes consists of four operational stages: 

[Detection], [Recognition], [Tracking], and [Decision making]. The [Decision making] stage receives 

the trajectory data from the [Tracking] stage and decides whether if avoidance maneuver must be 

performed, and if so, in what direction it should be. A pseudocode of this stage is given in algorithm 

4, and Fig. 32 is a diagram of this algorithm. 

 

Algorithm 4 Decision making for avoidance maneuvers 

Input: 𝑶𝒕                                            ►𝑂𝑡: object IDs and locations at current frame 

Output: 𝑨𝒕                                                   ►𝐴𝑡: avoidance maneuver direction 

 

1: 𝒇𝒐𝒓 𝑜𝑏𝑗𝑒𝑐𝑡 𝒊𝒏 𝑶𝒕: 

2:     𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 3𝐷 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡                             ►acquire 3D position of object 

3:    𝒊𝒇 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑧 <  𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦𝑇ℎ𝑟𝑒𝑠ℎ: 
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4:         𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 𝑠𝑡𝑜𝑝 𝑏𝑒𝑓𝑜𝑟𝑒 𝑝𝑟𝑜𝑐𝑒𝑒𝑑𝑖𝑛𝑔 

5:     𝒊𝒇 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝒊𝒔 𝒊𝒏𝒔𝒊𝒅𝒆 𝑆𝑎𝑓𝑒𝑊𝑖𝑛𝑑𝑜𝑤: 

6:         𝑚𝑎𝑟𝑘 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎𝑠 ℎ𝑜𝑠𝑡𝑖𝑙𝑒                    ►consider object as a threat if inside 𝑆𝑎𝑓𝑒𝑊𝑖𝑛𝑑𝑜𝑤 

7:         𝒊𝒇 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑧 < 𝑎𝑣𝑜𝑖𝑑𝑇ℎ𝑟𝑒𝑠ℎ:        ►execute avoidance maneuver if distance is below threshold 

8:             𝒊𝒇 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥𝑦 𝒊𝒏 𝑢𝑝𝑝𝑒𝑟𝐿𝑒𝑓𝑡: 

9:                 𝑚𝑜𝑣𝑒 𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑 𝑟𝑖𝑔ℎ𝑡 𝑎𝑡 𝑣 𝑚/𝑠 𝑢𝑛𝑡𝑖𝑙 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑜𝑓 𝑆𝑎𝑓𝑒𝑊𝑖𝑛𝑑𝑜𝑤 

10:             𝒊𝒇 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥𝑦 𝒊𝒏 𝑢𝑝𝑝𝑒𝑟𝑅𝑖𝑔ℎ𝑡: 

11:                 𝑚𝑜𝑣𝑒 𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑 𝑙𝑒𝑓𝑡 𝑎𝑡 𝑣 𝑚/𝑠 𝑢𝑛𝑡𝑖𝑙 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑜𝑓 𝑆𝑎𝑓𝑒𝑊𝑖𝑛𝑑𝑜𝑤 

12:             𝒊𝒇 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥𝑦 𝒊𝒏 𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑𝐿𝑒𝑓𝑡: 

13:                 𝑚𝑜𝑣𝑒 𝑢𝑝𝑤𝑎𝑟𝑑 𝑟𝑖𝑔ℎ𝑡 𝑎𝑡 𝑣 𝑚/𝑠 𝑢𝑛𝑡𝑖𝑙 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑜𝑓 𝑆𝑎𝑓𝑒𝑊𝑖𝑛𝑑𝑜𝑤 

14:             𝒊𝒇 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥𝑦 𝒊𝒏 𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑𝐿𝑒𝑓𝑡: 

15:                 𝑚𝑜𝑣𝑒 𝑢𝑝𝑝𝑒𝑟 𝑟𝑖𝑔ℎ𝑡 𝑎𝑡 𝑣 𝑚/𝑠 𝑢𝑛𝑡𝑖𝑙 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑜𝑓 𝑆𝑎𝑓𝑒𝑊𝑖𝑛𝑑𝑜𝑤 

 

 

Fig. 32. A diagram of algorithm 4 

 

It is desirable to use depth information for threat assessment and decision making. However, 

distance measures from stereo cameras have limited range since the disparity from two lenses are 

inversely proportional to distance. For example, the RealSense D435i stereo camera used for the 

experiment has an effective range of 10 meters. Therefore, the proposed system trusts depth 

information only if the object approaches within this range and performs avoidance maneuvers if the 

distance falls below a certain threshold. Additionally, if the initial measured distance to the object is 

too close (for example, if the moving object approached from the side of the vehicle outside the field 

of view), an emergency stop is commanded to avoid crashing into the obstacle. Radius of the safe 

window and the avoidance threshold can be determined from prior information such as objects’ 
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expected maximum velocity and the maximum possible maneuver velocity. A simple relation between 

the variables is as follows. 

 
𝑑𝑎𝑣𝑜𝑖𝑑𝑇ℎ𝑟𝑒𝑠ℎ

𝑣𝑜𝑏𝑗

=
𝑅𝑆𝑎𝑓𝑒𝑊𝑖𝑛𝑑𝑜𝑤

𝑣𝑚𝑎𝑥

 (4.3) 

 

 

5. System Integration and Test Results 

A. System integration 

The testing unit for the proposed system is a PX4 autopilot-based quadrotor UAV (Fig. 33). It is 

equipped with a Raspberry Pi 4 companion computer, a RealSense D435i stereo depth camera, and a 

RealSense T265 visual odometry camera for autonomous flight purposes. The system components 

are interconnected vis ROS, a robotics development software. Fig. 34 is a diagram of the system. 

 

 

Fig. 33. The testing unit for the proposed system. 
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Fig. 34. A schematic diagram of the system. 

 

 

B. Test results – video sequence 

To test the detection and tracking capabilities of the proposed system, a relevant test was conducted. 

The detection and tracking algorithm was tested on video sequences with moving objects (Fig. 35). 

Since these videos do not have depth information, the decision making and avoidance procedures 

were tested separately. 

 

 

Fig. 35. Video sequences for testing 
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Tracking results for these video sequences is as Fig. 36. The video results are at 

https://youtu.be/JvrTRMg2udU. The tracking algorithm works in real-time at 60 FPS at a 

Raspberry Pi 4 computer. It compensates noise components with various filters and keeps track of 

objects even in the case of detection failures. 

 

 

Fig. 36. Detection and tracking test results 

 

 

C. Test results – collision avoidance 

To test the integrated system for collision avoidance, the testing unit was set to fly forwards at 2m/s 

until avoidance maneuvers were required. Due to safety issues, the safe window radius was set to 1.5 

meters, the avoidance threshold to 1 meter, and the maximum maneuver speed to 3 m/s. Fig. 37 is an 

example detection result from the vehicle’s onboard computer. Collision avoidance test results are as 

Fig. 38, and more detailed video results are at https://youtu.be/JvrTRMg2udU. 

 

 

Fig. 37. Detection and tracking a flying ball 

https://youtu.be/JvrTRMg2udU
https://youtu.be/JvrTRMg2udU
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Fig. 38. Collision avoidance test results. 
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6. Conclusion and Future Works 

A vision-based mid-air collision avoidance system for UAVs was proposed and implemented. Video 

data from a front-mounted camera is utilized for moving object detection. Background scene 

transition due to ego-motion of the UAV is approximated with 2-D projective transformation, and the 

homography matrix is computed with optical flow. To reduce required computational load and 

improve the quality of approximation, optical flow is calculated only at edge regions of video frames. 

The previous and next frame is transformed to match the current frame, and background subtraction 

is performed to acquire a primitive estimate of the object location. Image filters and thresholding are 

utilized to improve the SNR of this result. A modified DBSCAN clustering algorithm is used to 

correctly identify multiple detected image patches as a single object. A distance-based tracking 

algorithm assigns object identities and tracks them across frames, and incorporates an additional noise 

filtering procedure based on tracked period. A stereo camera system measures distances to detected 

objects, and this information is used for determining whether if avoidance maneuvers must be 

executed. Limitation in measurement range of stereo cameras is also taken into consideration. The 

system effectively detects, recognizes and tracks moving objects in its field of view. It is implemented 

onto a test vehicle and performs mid-air collision avoidance to demonstrate its effectiveness in real-

world conditions. 

Future works would involve extending the Kalman filter into using full 3-D coordinates and not 

just 2-D pixel coordinates. This would make the constant velocity (CV) model more reasonable since 

the 3-D coordinates are real physical quantities. Also, a quantitative analysis of the performance 

metrics of the proposed system and comparison with other systems would be required.  
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