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향상된 객체 인식을 위한 합성 개구면 레이더 영상 내 표적 및 그림자 영역의 융합 

방안에 관한 연구 

Fusion of Target and Shadow Regions in Synthetic Aperture Radar Imagery for 
Improved Object Recognition 
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초록  

합성 개구면 레이더 (Synthetic Aperture Radar: SAR) 센서는 날씨 및 기후 조건에 상관없이 일정한 관측 품질을 

보증하지만, 광학 및 적외선 센서에 비해 낮은 영상 해상도를 지니며, 넓은 그림자 영역을 수반하는 단점으로 인해 

정확한 객체 인식이 불가능하다. 상기 문제를 해결하기 위해, 기존의 SAR 기반 객체 인식 기법들은 영상 내 

그림자 영역을 사전에 제거하고, 표적 영역만 추출함으로써 정제된 정보만을 취득하는데 초점을 맞추었다. 반면, 본 

논문에서는 그림자 정보를 역으로 활용하여 SAR 영상 내 정보량을 증폭하는 방안에 대하여 모색한다. 나아가 

인공지능 알고리즘을 활용하여 표적 영역과 그림자 영역을 결합함으로써 객체 인식 정확도를 더욱 향상시킬 수 

있는 방안을 제시한다. 
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1. Introduction 

Synthetic aperture radar (SAR) is an active imaging sensor characterized by its ability to generate high-

resolution radar images in all-day, all-weather, and long-range conditions(1). Its unique electromagnetic 

properties compared with optical imagery allow it to be leveraged as a key information source in various 

surveillance and reconnaissance systems(2). However, on the other hand, its electromagnetic reflections also 

cause some complications such as differences in the scattering mechanism, anisotropic factors, contamination 

from clutter or jamming signals, and speckle noise, resulting in less intuitive visual interpretations (3~8). In this 

respect, the manual analysis of objects of interest from massive SAR image streams requires considerable 

human and material resources; this has consequently necessitated the development of SAR automatic target 

recognition (ATR) technologies. 

 Traditional SAR-ATR algorithms are primarily performed in three stages: detection, feature extraction, and 

classification(9~19). Detection is a process of identifying only the regions of interest (ROI) from a wide SAR 

scene and can generally be achieved using constant false alarm rate-based adaptive thresholding 

techniques(20). Subsequently, in the feature extraction stage, all the ROI templates are projected onto a lower-

dimensional latent space such that each of them can be well aligned with respect to the corresponding category. 

Finally, some data-driven classifiers, such as AdaBoost, random forest, and support vector machine, can be 

exploited to automatically specify the detailed class of the target. 

Among them, the feature extraction phase is typically regarded as one of the most essential and intractable 

factors in determining the ATR performance(21,22). Accordingly, most traditional SAR-ATR studies have focused 

on the manual construction of salient features suitable for SAR imagery, based on various signal processing 

algorithms such as scattering center extraction(12,13), advanced filtering(14), graphical modeling(15), image 

transformation(16), and compressed sensing(17~19). These approaches have realized significant achievements, 

but still retain clear drawbacks, i.e., their encoding pipelines remain computationally inefficient; in particular, 

the improvement rate of recognition accuracy saturates gradually because of the intrinsic limitations of 

heuristics in handcrafted feature (HF) engineering. 

The advent of deep learning (DL) frameworks in the pattern analysis field has enabled the automatic 

formation of optimal feature descriptors from arbitrary raw input data(23~26). Inspired by this attractive property, 
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a large body of studies have attempted for successful application of the DL framework to SAR-ATR(3,27~39), 

yielding remarkable performance enhancements compared with previous HF-based approaches(9~19). Despite 

a few methodological differences among these approaches, they share a common principle, i.e., to develop 

SAR-friendly DL-based algorithms by introducing an inductive bias associated with the unique domain 

characteristics of SAR imagery into the DL model. Chen et al.(3) proposed a parameter-efficient network 

architecture fully composed of convolutional modules to compensate for insufficient labeled SAR data. 

Moreover, in terms of input data for the network, SAR-specific data augmentation methods were presented 

using several image transformation techniques(27,28) or generative adversarial networks(29,30); while in terms of 

network training, domain adaptation-based learning strategies were suggested for transferring semantic 

representations from large-size optical data to SAR(31~33). To fully utilize the spatiotemporal properties of SAR 

sequences, convolutional neural network (CNN)-recurrent neural network (RNN) or three-dimensional (3D) 

CNN topologies were adopted(34~36). Meanwhile, to leverage the phase characteristics of SAR more effectively, 

Zhang et al.(37) introduced a complex CNN architecture. In recent years, to solve reliability issues arising from 

the mixed learning of clutter information within SAR training templates(38,40,41), novel SAR preprocessing 

schemes that enable the pre-removal of clutter components have also been proposed(38,39). 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. Electromagnetic amplitude levels in SAR imagery. Target and shadow regions are marked in 
blue and red, respectively, and clutter pixels are excluded for visual clarity. (a) 3D view. (b) Top view. 

(c) Side view. 
 

The studies above demonstrate the importance of inducing a network to better reflect SAR domain properties 

such that ATR tasks can be performed successfully, instead of employing the typical DL algorithm developed 

for optical images as it is. Meanwhile, there also exists an additional domain characteristic of SAR that 

represents a distinct difference from other sensing modalities, i.e., the shadow information. Specifically, 

whereas electro–optical or infrared sensors form target images with a direct downward view, SAR signals are 

obtained from a slant transceiving path(42,43), which inevitably yields relatively wide shadow areas in the 

resultant images(27,44). Such a shadow region in the SAR image contains backprojected profiles of the object 

configuration and hence can be utilized for ATR, as with a target region(45~50). However, despite the useful 

information from the shadow domain, attempts to simultaneously use the target and shadow reflections for 

achieving further improvements in ATR performance are highly limited. To the best of our knowledge, with 

regard to the recent DL-based SAR-ATR approaches, the integration of the deep neural network (DNN)’s 
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capability in automatic feature extraction with the information fusion of target and shadow (IFTS) has not been 

investigated. 

The difficulty in incorporating the DL framework into the IFTS is primarily attributable to the inherent nature 

of shadow areas, which is clearly different from that of the target images. First, as shown in Fig. 1, shadow 

regions in SAR typically represent significantly lower intensity levels compared with the target or clutter regions. 

In addition, unlike the target area, whose internal pixels are composed of positive scattering peaks, most of 

the shadow pixels are based on negative scattering peaks. Nevertheless, conventional DNN architectures are 

not suitable for extracting complementary feature representations from each region, considering the 

contradictory characteristics of the target and shadow, but rather are configurated to focus only on target region. 

Consequently, semantic signatures from shadows are highly likely to be suppressed during the max-pool-

based feature encoding in a general DNN model(51). Second, the shadow area in a SAR image is highly 

sensitive to the variation in depression angles, compared with the target area(27,52). Correspondingly, under 

practical conditions with significantly different depression angles between the training and test SAR data, the 

shadow information may not be beneficial at all; in fact, it may deteriorate the ATR performance. 

Considering the aforementioned problems, unlike typical DL-based SAR-ATR approaches, which focus only 

on extracting salient features from target areas, we propose a novel framework that can achieve a successful 

IFTS through a parallelized processing scheme and adaptive multistage feature fusion, thereby affording 

further improved ATR performance. The main contributions of this study are threefold, as follows: 

1) A major problem in current DL-based SAR-ATR methods is their incapability in performing independent 

processing specialized for each domain modality of targets and shadows, since their structural 

limitations cause each region to undergo uniform preprocessing and feature encoding. To tackle this 

problem, we propose a novel parallelized SAR processing pipeline, in which target and shadow areas 

are first segmented from an input SAR image, followed by parallel preprocessing and DNN-based 

feature encoding specifically customized for each region. Subsequently, the deep representations 

extracted from each region are fused to produce a single final decision. Consequently, domain-centric 

processing of target and shadow from a single image can be realized; in particular, the utility of shadow 

information can be improved significantly, even under the situations involving variable depression angles. 

2) The target and shadow regions in a SAR template contain overlapping information and contribute 

differently from the perspective of ATR. In this respect, general feature fusion strategies(53,54) such as 

lateral concatenation and element-wise sum are not feasible for accommodating such information 

imbalances. Hence, we implement a novel domain fusion module (DFM), which induces the network to 

assign an adaptive weight in accordance with the influence of each region, thereby yielding 

complementary fusion. Moreover, a multistage fusion scheme is introduced to further improve the 

representation power of the fused feature. 

3) It is noteworthy that the proposed IFTS framework is generic, so can easily be combined with other DL-

based SAR-ATR techniques to strengthen their perception ability in the shadow region. Based on this 

flexibility, we investigate the performance gain by applying the proposed IFTS framework to various 

baseline DNN backbones, developed for image classification as well as SAR-ATR; the results confirm 

that our framework can activate each network to incorporate shadow information successfully and 

provide more precise recognition under both standard operation conditions (SOCs) and extended 

operation conditions (EOCs). To the best of our knowledge, this is the first study to report the efficacy of 

the IFTS for both SOCs and EOCs based on the DL approach. 

The remainder of this paper is organized as follows: In Section 2, the effects of shadows in the current DL-

based SAR-ATR techniques are investigated in various perspectives. Subsequently, we discuss the necessity 

of parallelized processing pipelines customized for targets and shadows separately. In Section 3, the 

methodology of the proposed IFTS framework is described in detail. Section 4 presents the experimental 

results under various conditions using a public moving and stationary target acquisition and recognition 

(MSTAR) dataset(52) to validate the effectiveness of the proposed method. Finally, concluding remarks are 

provided in Section 5. 
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2. Motivation 

In this section, the intrinsic incompatibility of current DL-based SAR-ATR approaches in addressing SAR 

shadow content is experimentally demonstrated. Subsequently, we explore the solutions for a successful IFTS. 

 

2.1. Necessity for Considering Shadow-Centric Processing in SAR-ATR 

Belloni et al.(51) designed an evaluation protocol to numerically confirm the global contribution of the target, 

shadow, and clutter regions for DL-based ATR. By training a baseline CNN with partially segmented SAR 

regions, classification scores were observed for all possible combinations. Their experimental results notably 

indicated that the effect of shadows on SAR-ATR performance is insignificant, implying that a CNN is incapable 

of appropriately leveraging semantic representations from the shadow. 

This undesirable phenomenon is due to the general CNN architectures centered solely on the feature 

extraction of the target, not the shadow. In other words, even though the shadow areas retain unique domain 

characteristics, which are exactly opposite to the target as discussed before (i.e., maintaining significantly 

lower intensity levels compared with the target or clutter, and comprising pixels with negative local peaks), the 

structural nature of the CNN causes final features to be extracted based on pixels with higher intensity levels 

and positive local peaks. Eventually, as shown by the experimental results of Belloni et al.(51), a typical CNN is 

likely to concentrate only on a target region, thereby causing the loss of useful discriminatory information within 

a shadow. 

 

 
Fig. 2. Conceptual figure of SAR imaging system for different RLOS conditions (i.e., different 

depression angles). 
 

It is noteworthy that the effect of shadows on ATR becomes further aggravated under EOCs, where the 

depression angle during the test session varies considerably compared with the training data. As illustrated in 

Fig. 2, a SAR system projects each object onto a slant image projection plane spanned by the radar line of 

sight (RLOS). During slant projection, a geometric distortion in the form of a scale transformation is inevitably 

incurred across the resulting SAR imagery. The problem is that the degree of such image distortion differs 

between the target and shadow regions, even within a single SAR image reflected from the same object(27). 

Formally, let the depression angle between a SAR platform and an object of interest be denoted as 𝜀. Then, 

considering the spatial geometry, the target region in the SAR projection plane is scaled with a factor of cos(𝜀) 

into the range direction, whereas the shadow is scaled with a relatively large factor of 1/ sin(𝜀) (27,52). For 

example, under the condition of EOC-1 in an MSTAR dataset, where the training and test data are constructed 

based on depression angles of 17∘ and 30∘ (a detailed description of the dataset is provided in Section 4.1), 

respectively, relative scaling ratio of the target region within the test SAR template is computed as follows: 
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where 𝜀𝑡𝑟𝑎𝑖𝑛 and 𝜀𝑡𝑒𝑠𝑡 represent the depression angles in the training and test data, respectively. By contrast, 

a much greater degree of compression is generated in the shadow region, as follows: 
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(a) 

 
(b) 

 
(c) 

Fig. 3. Example SAR templates for 2S1 vehicle at same azimuth angle but different depression 
angles. Target and shadow regions in each image are indicated with blue and red contours, 

respectively. Depression angles of (a) 15∘, (b) 17∘, and (c) 30∘. 
 

Fig. 3 shows the contours of the target and shadow on the SAR images captured from the same object at 

different depression angles (i.e., 15∘, 17∘, and 30∘). As expected, unlike the target areas outlined with blue 

lines, which represent almost similar configurations irrespective of the depression angle, the shadow areas 

with pink lines undergo severe image variation as the depression angle of SAR platform changes. 

 

Table 1. ATR Performance (Test Accuracy, %) Based on Several Regional Combinations of Partially 
Segmented SAR Images, under SOC and EOC-1 Setups 

 
SOC 

(Training: 𝟏𝟕∘, Test: 𝟏𝟓∘, 10 class) 
 

EOC-1 

(Training: 𝟏𝟕∘, Test: 𝟑𝟎∘, 4 class) 

 
Target 

+Shadow 

Target 

Only 

Shadow 

Only 
 

Target 

+Shadow 

Target 

Only 

Shadow 

Only 

AConvNet(3) 96.15% 95.12% 79.58%  91.67% 91.83% 36.24% 

LM-BN-CNN(38) 97.11% 96.30% 80.24%  93.54% 93.41% 39.22% 

ESENet(39) 97.08% 96.69% 80.58%  93.03% 93.57% 38.67% 

Average 96.78% 96.04% 80.13%  92.75% 92.94% 38.04% 

 

To numerically investigate the discussions above in terms of ATR performance, we measured the recognition 

accuracies with respect to regional combinations of partially segmented MSTAR SAR images (i.e., 

Target+Shadow, Target Only, or Shadow Only), similar to the experiments of Belloni et al.(51). However, in our 

case, an additional evaluation in EOC-1 was conducted as well, employing several backbone networks that 

were specifically designed for SAR, i.e., A-ConvNet(3), LM-BN-CNN(38), and ESENet(39), and the results are 

summarized in Table 1. Based on the results under the ideal SOC, it can be observed that utilizing the shadow 
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region alone even enables the networks to attain a stable ATR performance of approximately 80%, indicating 

that the shadow modality clearly contains some backprojected signatures for the objects of interest. Despite 

the semantic potentiality of shadows, the comparison between the case involving both a segmented target and 

shadow and the case involving the target alone indicates only a slight performance improvement of 0.74% on 

average. Especially under a more practical condition (EOC-1), it is remarkable that all network configurations 

suffer from severe performance degradation when trained and inferenced with only shadows (i.e., exhibiting a 

level of accuracy with slight difference from that of simply randomized outputs in the EOC-1's four-class 

classification task). This implies that the networks cannot extract any informative indicators from the shadow, 

particularly when different depression angles are involved between training and testing. Accordingly, DNNs 

based on both target and shadow information cannot benefit from the shadow; in fact, they yield rather 

degraded ATR performance compared with those based on the target only. 

The results shown in Table 1 explicitly demonstrate that the current approaches cannot combine the shadow 

information in a proper manner and that they depend only on the target information for SAR-ATR. For a 

successful IFTS, a network must be able to capture the unique domain characteristics of shadows as well as 

compensate for the region-wise scaling distortion with respect to the variation in the depression angle; this 

implies that shadow-centric processing must be accompanied together in the overall SAR-ATR mechanism, in 

addition to the target area. 

 

2.2. Necessity for Parallelized Processing Pipeline 

In addition to the necessity for designing separate processing for SAR shadow, a fundamental bottleneck 

exists when combining the shadow-centric processing with conventional DL-based ATR algorithms. Because 

the target and shadow regions are entangled within a single SAR template, independent processing optimized 

specifically for each modality is not feasible for implementation. In other words, when shadow-centric 

processing is applied to a specified SAR, the target area in the image will also be affected, and vice versa. 

 

 

 
(a) (b) 

  
(c) (d) 

Fig. 4. Plausible approaches for realizing IFTS-based SAR ATR. (a) Conventional single-pathway-
encoding pipeline. (b) Pixel-level fusion-based IFTS. (c) Feature-level fusion-based IFTS. (d) 

Decision-level fusion-based IFTS. 
 

Essentially, this problem is attributable to the single-pathway-based pipeline of current ATR approaches, in 

which uniform preprocessing and deep feature encoding are applied based on a specified SAR input, as shown 

in Fig. 4(a). In this regard, parallelized processing pipelines for the target and shadow must be established to 

manage the problem and realize independent processing oriented toward each modality. To this end, we herein 
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propose a novel SAR-IFTS framework that enables parallelized pipelines by regarding target and shadow 

regions within a single SAR as unique modalities. Specifically, the entangled target and shadow regions from 

the input SAR image are separated first using image segmentation techniques, followed by an independent 

processing suitable for each domain. Subsequently, the information pairs from the separated target and 

shadow are combined at a certain point to obtain a final single decision via a multimodal fusion scheme(55). 

As shown in Figs. 4(b)-(d), the typical multimodal fusion algorithms can be categorized into three primary 

schemes based on the type of information to be combined: pixel-level, feature-level, and decision-level fusion. 

Among them, feature-level fusion [Fig. 4(c)] is expected to be the most suitable for performing the IFTS task, 

since pixel-level fusion [Fig. 4(b)] inevitably demands a sophisticated mechanism of integrating pixel-wise 

information pairs with high dimensionality and decision-level fusion [Fig. 4(d)] cannot readily consider 

hierarchical inter-relationships between the two modalities. 

Hence, a parallel processing pipeline coupled with a feature-level fusion scheme is adopted in the proposed 

ATR framework to facilitate independent processing customized for the target and shadow, separately, while 

ensuring full benefits from multimodal fusion. In particular, the fusion is based on a newly developed DFM 

operation, which allows a network to extract complementary representations while considering the priority of 

each modality. In the next section, we present the methodology of the proposed framework in detail. 

 

3. Methodology 

 

 

Fig. 5. Overall pipeline of the proposed SAR IFTS framework. 
 

The overall concept of the proposed SAR-IFTS framework is presented in Fig. 5. As shown in the figure, the 

proposed framework first segments the target and shadow from a single SAR template, followed by image 

preprocessing and feature embedding specifically tailored for each region. Meanwhile, the representation pairs 

of the target and shadow extracted independently from the parallelized pipelines are combined based on novel 

feature fusion strategies to derive a single final decision. In this section, the stepwise procedures of the 

proposed framework are described in detail. 

 

3.1. Segmentations of Target and Shadow Regions 
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Since a SAR image generally shows a mixture of backscattering reflections from the target, shadow, and 

clutter, separation of each component must be preceded to realize a parallel processing mechanism. Because 

the target is clustered in the high-intensity range, whereas the shadow is in the low-intensity range across the 

global SAR distribution, they can be separated using a series of image processing techniques, such as 

intensity-based binarization and morphological refinement. Inspired by the key idea of several segmentation 

techniques(16,38,56,57), we re-established a SAR segmentation algorithm aimed at separating target and shadow 

regions from a single SAR image. 

Let a SAR image template be denoted as 𝐼[𝑚, 𝑛] with 1 ≤ 𝑚 ≤ 𝑀 and 1 ≤ 𝑛 ≤ 𝑁, where (𝑚, 𝑛) are the 

coordinates on the down-range and cross-range dimensions, respectively. Because radar reflection represents 

different levels of electromagnetic intensity depending on its RLOS range between the mounting platform and 

targets of interest, the intensity variation in the SAR image must first be adjusted. 
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Based on the adjusted SAR template 𝐼𝑣[𝑚, 𝑛] ∈ ℝ𝑀×𝑁, the target and shadow regions can be segmented via 

the following procedures: 

Step 1: Select only pixels that correspond to the upper 3% intensity from the entire histogram of 𝐼𝑣[𝑚, 𝑛] to 

generate a binarized target mask (i.e., 1 for the target and 0 for the remainder). Likewise, select only the pixels 

with the lower 25% amplitude to create a corresponding binary shadow mask. 

Step 2: Perform counting filtering for each mask such that spurious pixels can be suppressed to the 

maximum extent. 

Step 3: Morphological closing is applied to bind the areas of interest and smooth the edge components. 

Step 4: Obtain the final refined binary mask by extracting only the max-connected region. 

Step 5: Multiply each binary mask with 𝐼𝑣[𝑚, 𝑛] to segment the target and shadow pixels. Subsequently, 

obtain the final target image 𝑇[𝑝, 𝑞] ∈ ℝ𝑃×𝑄 and shadow image 𝑆[𝑝, 𝑞] ∈ ℝ𝑃×𝑄 by cropping a rectangular area 

with a width of 𝑃 and a height of 𝑄 around the center of mass from each region. 

 

      
(a) (b) (c) (d) (e) (f) 

      
(g) (h) (i) (j) (k) (l) 

Fig. 6. Stepwise output examples of the proposed segmentation technique for SAR template. (a) 
Original SAR image for T-72 tank in linear scale. (b) Target mask after upper thresholding. (c) Target 
mask after counting filtering. (d) Target mask after morphology. (e) Refined target mask obtained by 
selecting only the max-connected region. (f) Final segmented target image. (g) Original SAR image 

for T-72 tank in log scale. (h) Shadow mask after lower thresholding. (i) Shadow mask after counting 
filtering. (j) Shadow mask after morphology. (k) Refined shadow mask obtained by selecting only the 

max-connected region. (l) Final segmented shadow image. 
 

To provide a clear illustration, Fig. 6 shows the stepwise outputs of the proposed target/shadow 

segmentation process based on the SAR image chip of a T-72 tank. It is noticed that the target and shadow 

regions can be roughly be separated through hard thresholding [Figs. 6(b) and 6(h)] from 𝐼𝑣[𝑚, 𝑛], and then 
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gradually refined by counting filtering [Figs. 6(c) and 6(i)] and morphological adjustments [Figs. 6(d) and 6(j)]. 

Finally, the segmented images for target 𝑇[𝑝, 𝑞] and shadow 𝑆[𝑝, 𝑞] can be obtained by multiplying each 

binary mask with 𝐼𝑣[𝑚, 𝑛] in an element-wise manner and readjusting the center points, as shown in [Figs. 6(f) 

and 6(l)], respectively. 

 

3.2. Parallel Processing Customized for Target and Shadow Regions 

The core of the proposed SAR-ATR framework lies in the novel concept of the parallelized processing 

mechanism (Fig. 5), which can structurally ensure independent processing for 𝑇[𝑝, 𝑞]  and 𝑆[𝑝, 𝑞]  by 

regarding each of them as a disparate input modality. This, in turn, enables a flexible implementation of the 

preprocessing and feature embedding pipelines customized for each modality, while accounting for their 

characteristic differences. It is noteworthy that the target and shadow show distinct characteristic differences 

in two major aspects, as mentioned in Section 2.1: 1) in cases where the depression angle between the training 

and test conditions fluctuates, each region undergoes different degrees of image distortion in the form of scale 

transformation; 2) when approaching the electromagnetic scattering centers of an object, the reflected 

amplitude levels in the target region tend to increase, whereas the amplitudes of the shadow region gradually 

decrease. The two domain discrepancies are first compensated using our parallelized preprocessing 

techniques. 

 

3.2.1. Preprocessing for Target and Shadow Regions 

Recall that the target and shadow images are scaled across the down range dimension with a factor of 

cos(𝜀) and 1/ sin(𝜀), respectively, with respect to the depression angle 𝜀 between a SAR platform and an 

object of interest. Hence, when geometrical adjustment is performed based on the target area, the shadow 

area would undergo another form of scaling distortion as well, and vice versa. Now that the independent 

processing of the target and shadow is guaranteed by the parallelized mechanism, we can mitigate the scaling 

distortion of both 𝑇[𝑝, 𝑞] and 𝑆[𝑝, 𝑞] using the region-wise scaling factor. To this end, we adopt a general 

affine transformation technique. Let the depression angle εtest in the test environment be changed from the 

training depression angle 𝜀𝑡𝑟𝑎𝑖𝑛 (i.e., 𝜀𝑡𝑒𝑠𝑡 ≠ 𝜀𝑡𝑟𝑎𝑖𝑛). Then, for the testing conditions, we transform  𝑇[𝑝, 𝑞] 

and 𝑆[𝑝, 𝑞] in the (𝑝, 𝑞) Cartesian coordinates to 𝑇𝑐[𝑝
′, 𝑞′] and 𝑆𝑐[𝑝

′, 𝑞′] in the rescaled (𝑝′, 𝑞′) Cartesian 

coordinates, respectively, where the (𝑝, 𝑞) and (𝑝′, 𝑞′) coordinates are correlated as follows(27): 
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where 𝜆 denotes the recalibrating parameter, which is obtained by the inverse of the scaling distortion within 

each test region. 
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In summary, in the proposed IFTS framework, the input pair of segmented images 𝑇[𝑝, 𝑞] and 𝑆[𝑝, 𝑞] are 

used without modification for the training phase, and the rescaling transformation in (4) is additionally applied 

for the test phase such that even the test input pairs under 𝜀𝑡𝑒𝑠𝑡  become consistent with the training 

depression angle 𝜀𝑡𝑟𝑎𝑖𝑛. 

Next, in terms of image intensity, we compensate for the conflicting domain characteristics of the target and 

shadow through region-wise normalization, ensuring consistent statistical distributions as well as appropriate 

dynamic range levels corresponding to each region. Similar to the region-wise rescaling, normalization is also 

performed in a parallelized manner to readily manage the unique distribution of each modality. For example, 

𝑇𝑐[𝑝
′, 𝑞′] and 𝑆𝑐[𝑝

′, 𝑞′] in the test phase are normalized as follows: 



2021년 항공우주논문상  [전자/전기] 

 

 

,

[ , ]
,

[ , ]
[ , ]

min ,

c T

T

n

c T

p q
T

T p q

T p q
T p q







 

  −



  = 
  −

 
 

( , )

( , )

T

T

p q

p q

  

  

 (6) 

 

,

[ , ]
,

[ , ]
[ , ]

min ,

c S

S

n

c S

p q
S

S p q

S p q
S p q







 

   −
−  
 

  = 
   − 
−  
   

( , )

( , )

S

S

p q

p q

  

  

 (7) 

where 

 
 ( , ) [ , ] 0T cp q T p q   =  , 

 ( , ) [ , ] 0S cp q S p q   =   
 

Here, 𝑇𝑛[𝑝
′, 𝑞′] ∈ ℝ𝑃×𝑄  and 𝑆𝑛[𝑝

′, 𝑞′] ∈ ℝ𝑃×𝑄  represent the final preprocessed images for the target and 

shadow, respectively. In addition, 𝜇𝑇 and 𝜇𝑆 denote the sample means of the SAR images in the target and 

shadow regions, respectively; 𝜎𝑇  and 𝜎𝑆  denote sample variances for the corresponding regions, 

respectively. Note that the normalized output of the shadow is reversed considering its inverse characteristics, 

as shown in Fig. 1 (we refer to it as “inverse normalization” hereinafter); as such, consistent with the target 

image, the negative peaks of 𝑆𝑐[𝑝
′, 𝑞′] can be converted into positive peaks. 

 

3.2.2. DNN-based Feature Encoding for Target and Shadow Regions 

Considering that the preprocessed images 𝑇𝑛[𝑝
′, 𝑞′] and 𝑆𝑛[𝑝

′, 𝑞′] separately involve the signatures of the 

object of interest, a deep CNN model can be utilized for an automatic extraction of the complementary 

representation from each modality. In this subsection, we formulate a detailed methodology to extract a 

domain-specific feature representation based on each preprocessed image, given an arbitrary CNN model. 

A general CNN architecture is configured to iterate the nonlinear embedding and downsampling operations 

through the hierarchical combinations of convolutional mapping and pooling modules, thereby effectively 

deriving the global and local features from a high-dimensional input(58). By unifying various combinations of 

internal network modules and their hierarchical connections, numerous CNN topologies can be constructed. 

In this study, we do not focus on the topology of the deep network itself. Instead, we attempt to identify a 

method to convert a specified CNN-based feature extractor into an extended model aimed at the IFTS task. 

Let 𝑓(⋅  ; 𝜃)  denote a CNN-based extractor with internal parameters 𝜃 , which is designed to project an 

arbitrary input image 𝐴 ∈ ℝ𝑃×𝑄  into the latent space 𝑓(𝐴 ; 𝜃) = {𝜂1, 𝜂2, … , 𝜂𝐿} , where 𝜂𝑙  represents the 

feature from the 𝑙 -th encoding layer. Then, we duplicate it for extension to the parallelized encoding pair 

𝑓𝑇(⋅  ; 𝜃𝑇)  and 𝑓𝑆(⋅  ; 𝜃𝑆) , which exhibit an identical network topology with 𝑓(⋅  ; 𝜃)  but different internal 

parameters such that each pathway (or subnetwork) can be organized to address the multimodal input pair 𝑇𝑛 

and 𝑆𝑛, respectively (Fig. 5). Specifically, for a set of SAR images ℐ, a SAR template 𝐼[𝑚, 𝑛] ∼ ℐ uniformly 

sampled from ℐ, and two preprocessed region-wise images 𝑇𝑛 ∼ 𝒯 and 𝑆𝑛 ∼ 𝒮, the parallelized encoding 

pipelines of 𝑓𝑇(⋅  ; 𝜃𝑇)  and 𝑓𝑆(⋅  ; 𝜃𝑆)  allow each subnetwork to be individually optimized from 𝒯  and 𝒮 , 

thereby yielding the feedforward generation of region-wise feature pairs 𝑓𝑇(𝑇𝑛; 𝜃𝑇) = {𝜂𝑇
1 , 𝜂𝑇

2 , … , 𝜂𝑇
𝐿 } (for target) 

and 𝑓𝑆(𝑆𝑛; 𝜃𝑆) = {𝜂𝑆
1, 𝜂𝑆

2, … , 𝜂𝑆
𝐿} (for shadow). 

It is noteworthy that our pipeline enables a network to extract feature specifically oriented toward each 

conflicting region; but on the other hand, there remains an additional issue of how to properly combine the 

representation pairs from the target and shadow to derive a single final decision. In the next subsection, we 

introduce novel fusion strategies for the target and shadow, including the DFM and multistage fusion scheme. 

 

3.2.3. Adaptive Fusion of Target and Shadow Features 
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In SAR imagery, the target and shadow regions have imbalanced significance for ATR. Namely, despite the 

usefulness of shadows, they definitely retain a lower level of content information than the target areas. In this 

respect, the region-wise features 𝜂𝑇 and 𝜂𝑆 must be adaptively incorporated with unequal weight ratios. 

 

 
Fig. 7. Detailed workflow of DFM. 

 

Instead of determining the weight for each modality empirically, we allow the network to assign adaptive 

weights on its own, through a novel DFM. As illustrated in Fig. 7 the DFM is configured to take the feature pair 

of a certain layer {𝜂𝑇
𝑙 , 𝜂𝑆

𝑙 } as the input and then compute the corresponding weight ratio {𝛼𝑇
𝑙 , 𝛼𝑆

𝑙} using the 

attention mechanism. Specifically, the 3D input features 𝜂𝑇
𝑙 ∈ ℝ𝑋𝑙×𝑊𝑙×𝐻𝑙

 and 𝜂𝑆
𝑙 ∈ ℝ𝑋𝑙×𝑊𝑙×𝐻𝑙

 are compressed 

first via a global average pooling operation to form one-dimensional vectors 𝐳𝑇
𝑙 ∈ ℝ𝑋𝑙

 and 𝐳𝑆
𝑙 ∈ ℝ𝑋𝑙

: 
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where {⋅}𝑥 denotes the 𝑥-th element of the compressed feature vector. By concatenating 𝐳𝑇
𝑙  and 𝐳𝑆

𝑙  to form 

𝐳𝐹
𝑙 ∈ ℝ2𝑋𝑙

 , the weight value corresponding to each modality can be inferred through fully connected (FC) 

operation and sigmoid mapping, as follows: 

 ( )[ , ]l l l l l

T S F  = +W z b , (10) 

Here, 𝐖𝑙 and 𝐛𝑙 represent the trainable weight and bias of the FC operation, respectively, and 𝛾(⋅) refers 

to the sigmoid activation function(58). Finally, 𝜔𝑇
𝑙  and 𝜔𝑆

𝑙  are normalized to obtain the fusion ratio for the target 

(i.e., 𝛼𝑇
𝑙 = 𝜔𝑇

𝑙 /(𝜔𝑇
𝑙 + 𝜔𝑆

𝑙 )) and shadow (i.e., 𝛼𝑆
𝑙 = 𝜔𝑆

𝑙 /(𝜔𝑇
𝑙 + 𝜔𝑆

𝑙 )). 

In particular, we do not confine the application of the DFM to a specific layer; instead, we allow it to be 

leveraged across multiple encoding layers such that the network can further benefit from the effect of adaptive 

fusion. During the parallel encoding of the target and shadow, we allocate the DFM-driven adaptive weights 

for each layer where the region-wise features become resampled via the pooling operation, expressed as 

follows: 
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where 𝕃 represents the set of the layers right after pooling operations in 𝑓. Now that the adaptive weights for 

the target and shadow regions are guaranteed across multiple layers, ATR can be performed by concatenating 

the final latent 𝛼𝑇
𝐿𝜂𝑇

𝐿   and 𝛼𝑆
𝐿𝜂𝑆

𝐿  from each subnetwork, followed by the application of the FC layers and 

softmax classifier to the fused feature vector. 
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To train the overall IFTS network 𝑓𝐹(⋅  ; 𝜃𝑇 , 𝜃𝑆, 𝜃𝐹), 𝜃𝑇 in the target-centric subnetwork 𝑓𝑇(⋅  ; 𝜃𝑇), 𝜃𝑆 in the 

shadow-centric subnetwork 𝑓𝑆(⋅  ; 𝜃𝑆) , and the parameters 𝜃𝐹  corresponding to multistage DFMs must be 

considered comprehensively; all of them can be optimized in an end-to-end manner. The detailed learning and 

inference algorithms of the proposed IFTS framework are shown in Algorithms 1 and 2, respectively. 

 

4. Experimental Results 

4.1. Dataset Description 

 

 
Fig. 8. Optical (left) and SAR (right) images for 10 different ground vehicles. 

 

To evaluate the proposed SAR-IFTS framework, we used the public MSTAR dataset(52) as a benchmark, 

which was established under the joint support of the Defense Advanced Research Projects Agency (DARPA) 

and the Air Force Research Laboratory (AFRL). The collection was based on the Sandia National Laboratory 

SAR sensor platform for 10 different categories of ground military vehicles (armored personnel carrier: BMP-

2, BRDM-2, BTR-60, and BTR-70; tank: T-62, T-72; air defense unit: ZSU-234; bulldozer: D-7; rocket launcher: 
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2S1; truck: ZIL-131), which are shown in Fig. 8. For each category, the resulting SAR images were acquired 

from a full aspect coverage (i.e., from 0∘ to 360∘ azimuth angle varying at an interval of 5∘ to 6∘), with a 

spatial resolution of 0.3 m × 0.3 m and a size of 128 × 128 pixels. 

 

Table 2. Training and Test SAR Samples under SOC Experimental Setup 

Class Serial No. 
Training  Test 

Depression Number  Depression Number 

BRDM-2 E-71 17° 298  15° 274 

BTR-60 7532 17° 256  15° 195 

BTR-70 C71 17° 233  15° 196 

T-62 A51 17° 299  15° 273 

ZSU-234 d08 17° 299  15° 274 

D-7 13015 17° 299  15° 274 

2S1 B01 17° 299  15° 274 

ZIL-131 E12 17° 299  15° 274 

BMP-2 9563 17° 233  15° 195 

 9566 17° 232  15° 196 

 C21 17° 233  15° 196 

T-72 132 17° 232  15° 196 

 812 17° 231  15° 195 

 S7 17° 228  15° 191 

 

Table 3. Training and Test SAR Samples under EOC-1 Experimental Setup 

Class Serial No. 
Training  Test 

Depression Number  Depression Number 

BRDM-2 E-71 17° 298  30° 287 

ZSU-234 d08 17° 299  30° 288 

2S1 B01 17° 299  30° 288 

T-72 132 17° 232  - - 

 812 17° 231  - - 

 S7 17° 228  - - 

 A64 - -  30° 288 

 

Table 4. Training and Test SAR Samples under EOC-2 Experimental Setup 

Class Serial No. 
Training  Test 

Depression Number  Depression Number 

BRDM-2 E-71 17° 298   - 

BTR-70 C71 17° 233   - 

BMP-2 9563 17° 233   - 

T-72 132 17° 232   - 

 S7 - -  15°, 17° 419 

 A32 - -  15°, 17° 572 

 A62 - -  15°, 17° 573 

 A63 - -  15°, 17° 573 

 A64 - -  15°, 17° 573 

 

For a comprehensive evaluation of various scattering scenarios, the MSTAR dataset can mainly be divided 

into two setups depending on the operating conditions: the SOC and EOC. The SOC is defined as a 10-class 

SAR classification problem for ground objects measured from exactly the same target configurations and serial 

numbers, as well as at similar depression angles, reflecting almost ideal scenarios. The EOC setups are 

designed to assess the performance under more practical scattering conditions than the SOC and can further 

be categorized into three different variants, i.e., EOC-1, EOC-2, and EOC-3, each of which reflects the scenario 
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of significant depression angle change, target configuration variance, and version variance, respectively. 

Detailed target information and the number of available SAR templates in each dataset setup are listed in 

Tables 2, 3, 4, and 5. 

 

Table 5. Training and Test SAR Samples under EOC-3 Experimental Setup 

Class Serial No. 
Training  Test 

Depression Number  Depression Number 

BRDM-2 E-71 17° 298  - - 

BTR-70 C71 17° 233  - - 

BMP-2 9563 17° 233  - - 

 9566 - -  15°, 17° 428 

 C21 - -  15°, 17° 429 

T-72 132 17° 232  - - 

 812 - -  15°, 17° 426 

 A04 - -  15°, 17° 573 

 A05 - -  15°, 17° 573 

 A07 - -  15°, 17° 573 

 A10 - -  15°, 17° 567 

 

To segment the target and shadow regions from a specified MSTAR SAR chip (Section 3.1), we utilized a 5 

× 5 counting filter with a threshold of 15, and a 5 × 5 morphological image mask with its vertex pixels set to 

0, as follows: 

 

0 1 1 1 0

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

0 1 1 1 0

 
 
 
 
 
 
 
 

  

The final segmented size of each region, i.e., (𝑃, 𝑄), was set to (96,96). 

 

4.2. Experimental Setup 

Note that the proposed IFTS framework is generic, so it can be easily combined with other classification 

models regardless of the network topology. Hence, we comprehensively investigated the ATR performance 

based on various network structures, including backbone models specialized for SAR imagery, such as 

AConvNet(3), LM-BN-CNN(38), and ESENet(39), as well as baseline models developed in the image classification 

field, such as AlexNet(23), VGGNet(59), and ResNet(60). By adding a global average pooling layer(60) to the last 

encoding layer (i.e., the layer right before the FC layers) and modifying the channel size of the input 

convolutional kernel to 1, each network was adjusted appropriately to manage the SAR images of an arbitrary 

input size. 

Each model was trained for 300 epochs using the adaptive moment estimation (Adam) optimizer(61) at a 

learning rate of 0.001 and a batch size of 128. All the experiments were implemented based on the framework 

of Pytorch 1.6, which was executed on an Intel i7-9800K CPU with an Nvidia Titan RTX GPU (24 GB memory) 

and 64 GB of RAM. 

 

4.3. Results Under SOC 

As listed in Table 2, the training and test datasets in the SOC setup comprise 10-class SAR images of the 

same target configurations and serial numbers captured from similar depression angles of 17∘  and 15∘ , 

respectively. Under this ideal setup, we measured the ATR accuracy of each baseline network by applying/not 

applying the proposed IFTS framework. Namely, one is based only on the target regions, similar to current 

SAR-ATR approaches(17,38,39,62), whereas the other utilizes the target and shadow simultaneously through our 

IFTS-based encoding. Results are reported as the averages of five independent trials for reliability. 
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Table 6. Experimental Results under SOC Setup 

Speciality Backbone # Params Accuracy [%] 

Target Only 

(SAR) 

AConvNet(3) 117K 95.12 

LM-BN-CNN(38) 141K 96.30 

ESENet(39) 555K 96.69 

Target Only 

(Optical Image) 

AlexNet(23) 57M 94.83 

VGGNet16(59) 134M 94.67 

VGGNet19(59) 140M 94.23 

ResNet18(60) 11M 96.87 

ResNet34(60) 21M 96.72 

ResNet50(60) 24M 96.61 

Target 

+ Shadow 

AConvNet + IFTS 235K 97.59 (+2.47) 

ESENet + IFTS 1.1M 98.45 (+1.76) 

ResNet18 + IFTS 22M 98.90 (+2.03) 

 

 
Fig. 9. SAR-ATR accuracy of various backbone models when trained with or without our IFTS 

framework, under SOC setup. 
 

The ATR results for each model are summarized in Table 6. In the table, we emphasize the best performance 

by the bold-face font and the second-best performance by the italic font. To provide a clearer comparison of 

the results, we also present the ATR performance with respect to the parameter size of each backbone model, 

as shown in Fig. 9. By comparing the outcomes of conventional target-only encodings (top nine rows of Table 

6), it is noticeable that the ATR techniques customized for SAR imagery(3,38,39) exhibit satisfactory performance 

even with small numbers of training parameters. By contrast, the backbone models specialized in optical data 

pursue deeper layers and larger parameter sizes to further improve the representation capability of the 

extracted features, thereby resulting in ResNet18 achieving the best ATR accuracy among the existing 

techniques. Meanwhile, the oversized network inevitably requires more training SAR data to prevent overfitting, 

and consequently indicates rather deteriorated performance over a certain number of training parameters. This 

demonstrates the fundamental limitations of current SAR-ATR approaches that attempt to improve the 

performance through changes in the model backbone, since data acquisition is substantially laborious and 

expensive particularly in SAR-based tasks. 

Notably, applying the proposed IFTS framework allows all models to successfully exploit shadow modality 

and hence outperform each backbone counterpart to a large extent (the accuracy gain compared with its 

corresponding counterpart is also presented in the table). When coupled with the IFTS, even AConvNet can 

achieve an ATR performance superior to that of the previous best model based on target-only encoding, i.e., 

ResNet18+target-only encoding, using significantly fewer training parameters (approximately 47 times lower 
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than that of ResNet18). ResNet18 coupled with the IFTS demonstrates state-of-the-art performance under the 

SOC setup, 2.03% higher than its counterpart. These results support our motivation to exploit shadow 

information together for improved ATR. Detailed ATR results for ResNet18+IFTS are shown in Table 7 in a 

confusion matrix format. 

 

Table 7. ATR Results of ResNet18+IFTS in Confusion Matrix Form, under SOC Setup 

Class 
BRDM-

2 
BTR-60 BTR-70 T-62 

ZSU-

234 
D-7 2S1 

ZIL-

131 
BMP-2 T-72 

Accuracy 

[%] 

BRDM-2 268 3 1 0 0 0 0 1 1 0 97.81 

BTR-60 5 189 0 0 1 0 0 0 0 0 96.92 

BTR-70 0 0 194 0 0 0 2 0 0 0 98.98 

T-62 0 0 0 269 1 0 0 1 0 2 98.53 

ZSU-234 0 0 0 0 271 2 0 0 0 1 98.91 

D-7 0 0 0 0 2 272 0 0 0 0 99.27 

2S1 0 0 1 0 0 0 270 3 0 0 98.54 

ZIL-131 0 0 0 0 3 0 0 270 0 1 98.54 

BMP-2 0 1 0 0 0 0 0 0 583 3 99.32 

T-72 0 0 0 1 0 0 0 0 0 581 99.83 

Total           98.88 

 

It should be noted that this study focused on the practicality and realization of the IFTS in the pattern analysis 

of radar imagery, i.e., we did not address detailed orthogonal factors that can further improve ATR performance, 

such as advanced segmentation algorithms of SAR imagery(63,64), domain adaptation(31~33), and modern 

network architectures(34~36,65). We believe that combining such factors with the proposed IFTS framework will 

further improve robustness and generality. 

 

4.4. Results Under EOCs 

 

Table 8. Experimental Results under EOC Setups 

Speciality Backbone # Params 
Accuracy [%] 

under EOC-1 under EOC-2 under EOC-3 

Target Only 

(SAR) 

AConvNet(3) 110K 91.83 88.23 87.25 

LM-BN-CNN(38) 141K 93.41 88.96 88.12 

ESENet(39) 555K 93.57 89.81 89.33 

Target Only 

(Optical Image) 

AlexNet(23) 57M 91.05 87.68 86.55 

VGGNet16(59) 134M 89.94 87.27 86.63 

VGGNet19(59) 140M 90.10 87.04 86.47 

ResNet18(60) 11M 93.75 90.21 90.31 

ResNet34(60) 21M 93.92 90.63 89.97 

ResNet50(60) 24M 93.66 90.44 89.83 

Target 

+ Shadow 

AConvNet + IFTS 222K 95.04 (+3.21) 97.23 (+9.00) 94.48 (+7.23) 

ESENet + IFTS 1.1M 95.83 (+2.26) 97.90 (+8.09) 95.09 (+5.76) 

ResNet18 + IFTS 22M 96.86 (+3.11) 98.28 (+8.07) 95.46 (+5.15) 

 

In this subsection, the numerical performance of each ATR model is investigated under different EOC setups, 

which reflect more practical circumstances than the SOC setup. The overall results for the EOC-1, EOC-2, and 

EOC-3 datasets are organized in Table 8. 

 

4.4.1. Results Under EOC-1 

The EOC-1 setup corresponds to the scenario of significant depression angle changes and comprises four-

class training and test data obtained from depression angles of 17∘ and 30∘, respectively (Table 3). Based 

on the first column of Table 8, which shows the results for EOC-1, it can be observed that the overall ATR 

performance deteriorates compared with the SOC setup, despite the decrease in the number of classes to be 
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categorized (i.e., from 10 to 4 classes). This indicates the difficulty in capturing an appropriate high-level 

representation under significant depression angle differences between the training and test SAR data. 

Fortunately, it is remarkable that applying the proposed IFTS framework can increase ATR accuracies with 

larger margins compared with SOC setup across all counterpart backbones: improvements by 3.21% for 

AConvNet, 2.26% for ESENet, and 3.11% for ResNet18. Detailed EOC-1 results of the ResNet18 backbone 

model combined with the IFTS are presented in Table 9 in a confusion matrix format. 

 

Table 9. ATR Results of ResNet18+IFTS in Confusion Matrix Form, under EOC-1 Setup 

Class BRDM-2 ZSU-234 2S1 T-72 Accuracy [%] 

BRDM-2 284 1 2 0 98.95 

ZSU-234 0 282 2 4 98.26 

2S1 7 0 277 4 96.18 

T-72 6 7 3 272 94.44 

Total     96.87 

 

4.4.2. Results Under EOC-2 

EOC-2 is a four-class classification setup for evaluating ATR performance in a scenario where the target 

configuration varies between training and testing (Table 4). The results under the EOC-2 setup (the second 

column of Table 8) reveal that the conventional models with target-only encoding yield further degraded 

accuracies when the target configurations are varied, compared with the EOC-1 case where the depression 

angles are varied. Nevertheless, when the proposed IFTS framework is applied, all networks indicate huge 

performance improvements (i.e., improvements by 9.00% for AConvNet, 8.09% for ESENet, and 8.07% for 

ResNet18), resulting in even higher accuracies compared to those under EOC-1. Therefore, we can infer that 

the shadow region can provide further complementary indicators in the scenario of configuration variant 

compared with the other setups. Table 10 shows the confusion matrix of the results of the ResNet18 backbone 

model with IFTS under the EOC-2 setup. 

 

Table 10. ATR Results of ResNet18+IFTS in Confusion Matrix Form, under EOC-2 Setup 

Class Serial No. BRDM-2 BTR-70 BMP-2 T-72 Accuracy [%] 

T-72 

S7 0 0 10 409 97.61 

A32 1 1 2 568 99.30 

A62 0 2 5 566 98.78 

A63 6 0 10 557 97.21 

A64 0 4 7 562 98.08 

Total      98.23 

 

4.4.3. Results Under EOC-3 

 

Table 11. ATR Results of ResNet18+IFTS in Confusion Matrix Form, under EOC-3 Setup 

Class Serial No. BRDM-2 BTR-70 BMP-2 T-72 Accuracy [%] 

BMP-2 
9566 10 0 418 0 97.66 

C21 7 1 420 1 97.90 

T-72 

812 2 11 17 396 92.96 

A04 0 3 29 541 94.42 

A05 0 0 20 553 96.51 

A07 8 3 27 535 93.37 

A10 0 3 18 546 96.30 

Total      95.52 

 

This setup reflects the scenario where the target versions are varied, and it comprises four-class training 

SAR data and two-class test data with versions different from those in training (Table 5). The results of the 

EOC-3 setup (the third column of Table 8) show that the models based on IFTS encoding outperform those 

based on conventional target-only encoding by a large margin (i.e., improvements by 7.23% for AConvNet, 
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5.76% for ESENet, and 5.15% for ResNet18), demonstrating the effectiveness of the proposed IFTS 

framework even in the scenario involving different target versions between training and testing. The confusion 

matrix for the ResNet18+IFTS model is presented in Table 11. 

 

4.4.4. Overall Discussion of EOC Results 

Overall, the ATR models in the EOC setups highly benefit from the proposed IFTS framework regardless of 

the backbone topology; they exhibit even greater accuracy improvements compared with the SOC setup. 

Considering the aforementioned concern that the ATR performance can rather be degraded when the shadow 

information is incautiously incorporated without compensation for its unique domain characteristics (as 

discussed in Section 2.1), these results not only support our motivation to enable the cooperative 

implementation of shadow-centric processing based on a parallelized mechanism, but also validate the 

practicality of the proposed IFTS framework. 

 

4.5. Ablation Study: Effectiveness of Shadow-Centric Preprocessing 

 

  
(a) (b) 

Fig. 10. SAR-ATR accuracy of various backbone models trained only on shadow modalities with 
different preprocessing. (a) Results under SOC setup. (b) Results under EOC-1 setup. 

 

To systematically explore the effects of the proposed shadow-centric processing techniques (i.e., image 

rescaling for shadow and inverse normalization), we herein report the performance of several ATR models 

trained with only shadow information. We compared three different combinations of shadow preprocessing 

pipelines under the SOC and EOC-1 setups while fixing the other conditions. The results for each setup are 

illustrated in Fig. 10. 

As presented in Fig. 10(a), which corresponds to the results of the SOC, adding a shadow-oriented rescaling 

algorithm increases the ATR accuracy across all backbone models (a 0.59% increase on average) compared 

with conventional processing, and further improves the performance when combined with the inverse 

normalization technique (an additional increase of 3.74% on average). In addition, it can be observed that 

appropriate preprocessing is much more influential than network architectures in managing shadow regions. 

The relative effectiveness of the shadow-oriented rescaling compared with inverse normalization is due to the 

marginal difference in the depression angle between training and test under the ideal SOC condition. As shown 

by the results under significant depression angle differences [Fig. 10(b)], it is clear that the shadow-oriented 

rescaling technique is extremely beneficial; it affords a significant improvement of 13.77% on average, 

compared with the additional increase of 2.14% when inverse normalization is added. In general, the results 

above explicitly demonstrate the validity of the proposed preprocessing techniques for shadows, particularly 

under practical sensing scenarios. 

 

4.6. Ablation Study: Effectiveness of Fusion Strategies 
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Fig. 11. SAR-ATR accuracy of various backbone models based on different fusion rules, under SOC 

setup. 
 

To validate the effect of the proposed fusion strategies (i.e., adaptive fusion using multistage DFMs) for 

disparate target and shadow information, we evaluate the ATR performance of the SOC dataset under several 

plausible fusion rules: 1) pixel-level fusion of the preprocessed target and shadow images, 2) concatenation-

based fusion of last-layer features, 3) DFM-based fusion of last-layer features, and 4) DFM-based fusion of 

multistage features. 

As shown in Fig. 11, the DFM-based fusion rules outperform the pixel-level and concatenation-based fusion 

rules significantly, which indicates the importance of adaptive integration in leveraging shadows for SAR-ATR. 

In addition, our multilayer fusion strategy can further strengthen the representation capability of each network, 

leading to a 0.25% increment in ATR accuracy on average in comparison with last-layer fusion. 

 

5. Conclusion 

Shadow reflection in SAR imagery includes backscattered components of an object’s configuration, as with 

direct target reflections. However, its unique domain properties, which are distinct from the target region, result 

in substantial incompatibility with the target, rendering shadows inoperative in current SAR-ATR tasks. To 

induce a network such that the benefit from the joint utilization of the target and shadow can be reaped 

effectively, we proposed an IFTS framework comprising novel solutions in three aspects. First, we designed a 

new series of preprocessing techniques specifically customized for the shadow region to compensate for its 

contradictory nature, as compared with the target. Second, we presented a parallelized SAR encoding pipeline 

such that independent processing for the target and shadow can be guaranteed structurally, thereby resulting 

in a representation pair oriented toward each modality. Third, we proposed a multistage fusion strategy based 

on DFMs, which enabled an adaptive fusion of the target and shadow while accounting for their relative 

significance. Based on extensive experiments using a public SAR benchmark dataset, we observed that our 

IFTS successfully enabled a network to improve its understanding of the shadow region, thereby achieving 

state-of-the-art performances under ideal SOC as well as practical EOC setups. 
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