NURB

Discretized

Morphing

A Study on the Aerodynamic Characteristics of Discretized Morphing Airfoils Regenerated by Splines and NURB Curves

2003 10

I	
ist of FiguresIII	
AbstractIV	

1.	(Introduction)1
1.1.	1
1.2.	1
1.3.	2
1.4.	2

2.	(Basic	Theory)3
2.1.	,	3
2.2.		4
2.3.	Neumann	4
2.4.		5
2.5.	Linear Streng	th Vortex Panel Method(LSVP Method)6
	2.5.1.	6
	2.5.2.	7
	2.5.3.	7
	2.5.4.	8
	2.5.5.	8
	2.5.6.	9
2.6.		10
2.7.	••••••	11
2.8.	••••••	
2.9.	LE	13
2.10.	••••••	14
2.11.	NURB	16
		Ι

17	(Result)		3.
17			3.1.
			3.2.
		3.2.1.	
21	NURB	3.2.2.	
		3.2.3.	
25	$(x_{cp} \text{ and } x_{ac})$	3.2.4.	
28	lusion)	(Concl	4.
29	Reference)	(1	5.

List of Figures

- Fig. 1 Graph showing thickness/chord ratio versus speed(Ref. [4])
- Fig. 2 Layout for LSVP method (Ref. [6])
- Fig. 3 Force distribution (Ref.[4])
- Fig. 4 Moment and Center of Pressure (Ref.[4])
- Fig. 5 A quarter point Cm and Xac(Ref.[4])
- Fig. 6 Moment about leading edge (Ref.[4])
- Fig. 7 Schematic chart showing work flow, in brevity
- Fig. 8 NACA64a204 and its Fourier approximation, not in 1:1 ratio
- Fig. 9 Lower airfoils close to NACA64a204, not in 1:1 ratio
- Fig.10 Chosen airfoil(Miley) with NACA64a204 in 1:1 ratio
- Fig.11 Airfoils created by spline, and piecewise polynomial at LE & TE
- Fig.12 Cp distribution of Fig. 11 for morphing stages
- Fig.13 NURB created airfoils for morphing stages
- Fig.14 Cp distribution of Fig.13
- Fig.15 Cp distribution. LSVP and XFOIL on Miley-mix
- Fig.16 Reconfiguration of Miley-mix airfoil panels at the mid section
- Fig.17 Positional total moment coefficient using Eq. [3.7]
- Fig.18 Cp decomposition and moment coefficient relation

Abstract

A Study on the Aerodynamic Characteristics of Discretized Morphing Airfoils Regenerated by Splines and NURB Curves

The study focuses on the generation of airfoil panels, the reconfiguration of the morphing airfoils and its method. The first assumption is the air and its flow are assumed incompressible, irrotational, inviscid and subsonic for simplicity. The second assumption made is the morphing airfoils form the airfoil shapes generated by conventionally existing low thickness/chord(T/C) ratio and high T/C ratio airfoils. The next assumption made is, thereon, since airfoils in continuous morphing stages are generated from both proper airfoils, they should, therefore, show proper pressure distributions; that is the regenerated morphing airfoils are apt for flying objects as UCAVs and general airplanes. For analysis, the continuous morphing stages are discretized.

To regenerate the airfoil, numerical curve fitting methods such as natural cubic spline, piecewise polynomial fitting, and NURB curves were tested successively in a routine for better pressure distribution, and for higher efficiency. In the course of panel regeneration, airfoils by NURB showed positive tendency that it generated dense panels at both leading and trailing edges while maintaining proper Cp distribution, leaving wide panels at the middle without further vigorous manipulation. The pressure distribution graphs using the linear strength vortex panel(LSVP) method were obtained as the results. In order to verify the results, XFOIL was used for validification. The study finds the concept of morphing airfoils and its approaching method described in this study feasible. The study also suggests another method for finding 'aerodynamic center' by deriving the positional (total) moment coefficient ($C_{m,QX_{m}}$) on the chord.

Key Word: Morphing, Airfoil, Spline, NURB, Regeneration, Aerodynamic Center, Linear Strength Vortex Panel Method

1. (Introduction)

1.1.

가

(Ref.[4], p.332).

planform

•

,

, NASA

Morphing wing 기

1.2.

Prock[1] . Gano Renaud[2] variform wing concept , Cadogan[3]

,

가 가 . 가 , AR 가

Fig.1 Graph showing thickness/chord ratio versus speed(Ref.[4])

가

•

- 2 -

2. (Basic Theory)

2.1. ,

,

 $\nabla \cdot V = 0$.

.

 $V = \nabla \Phi^*$.

•

$$\nabla \cdot (\nabla \Phi^*) = 0 \tag{2.1}$$

$$\nabla^2 \boldsymbol{\varPhi}^* = 0 \tag{2.2}$$

$$\nabla^2 \boldsymbol{\Phi}^* = -\frac{\partial^2 \boldsymbol{\Phi}^*}{\partial x^2} + -\frac{\partial^2 \boldsymbol{\Phi}^*}{\partial y^2} + -\frac{\partial^2 \boldsymbol{\Phi}^*}{\partial z^2} = 0$$
[2.3]

,

Ψ

$$u = -\frac{\partial \Psi}{\partial z}, \quad v = -\frac{\partial \Psi}{\partial x}$$
 [2.4]

,

, $\nabla \cdot V = 0$

.

$$\nabla \cdot V = -\frac{\partial u}{\partial x} + -\frac{\partial v}{\partial z} = -\frac{\partial}{\partial x} \left(-\frac{\partial \Psi}{\partial z} \right) + -\frac{\partial}{\partial z} \left(-\frac{\partial \Psi}{\partial x} \right) = -\frac{\partial^2 \Psi}{\partial x \partial z} - \frac{\partial^2 \Psi}{\partial z \partial x} = 0$$
 [2.5]

$$\nabla \times V = -\frac{\partial v}{\partial x} - \frac{\partial u}{\partial z} = -\frac{\partial}{\partial x} \left(-\frac{\partial \Psi}{\partial x} \right) - -\frac{\partial}{\partial z} \left(-\frac{\partial \Psi}{\partial z} \right) = -\frac{\partial^2 \Psi}{\partial x^2} + -\frac{\partial^2 \Psi}{\partial z^2} = 0$$
 [2.6]

2.2.

Green identity
$$\nabla^2 \boldsymbol{\phi}^* = 0$$
 [2.7]

$$\boldsymbol{\varphi}^{*}(x, y, z) = \left(-\frac{1}{4\pi}\right) \int_{S_{B}} \left[\sigma\left(\frac{1}{r}\right) - \mu n \cdot \nabla\left(\frac{1}{r}\right)\right] dS + \boldsymbol{\varphi}_{\infty}$$

$$\tag{2.7}$$

n jump μ . Φ_{∞} [2.8]

$$\Phi_{\infty} = U_{\infty}x + V_{\infty}y + W_{\infty}z \qquad [2.8]$$

.

,

$$\boldsymbol{\varPhi}^{*}(x, y, z) = \left(\frac{1}{4\pi}\right) \int_{body + wake} \mu n \cdot \nabla \left(\frac{1}{r}\right) dS - \frac{1}{4\pi} \int_{body} \sigma \left(\frac{1}{r}\right) dS + \boldsymbol{\varPhi}_{\infty}$$

$$\tag{2.9}$$

.

2.3. Neumann

,

.

$$\lim_{r \to \infty} \nabla \boldsymbol{\varPhi} = 0, \qquad \mathbf{r} = (\mathbf{x}, \mathbf{y}, \mathbf{z}) \qquad [2.11]$$

$$\nabla \qquad [2.12]$$

$$\nabla \boldsymbol{\varPhi}^*(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \left(-\frac{1}{4\pi}\right) \int_{body + wake} \mu \nabla \left[-\frac{\partial}{\partial n} \left(\frac{1}{r}\right)\right] dS - \frac{1}{4\pi} \int_{body} \sigma \nabla \left(\frac{1}{r}\right) dS + \nabla \boldsymbol{\varPhi}_{\infty} \qquad [2.12]$$

$$[2.13]$$

$$\left\{ \left(-\frac{1}{4\pi}\right) \int_{body + wake} \mu \nabla \left[-\frac{\partial}{\partial n} \left(\frac{1}{r}\right)\right] dS - \frac{1}{4\pi} \int_{body} \sigma \nabla \left(\frac{1}{r}\right) dS + \nabla \boldsymbol{\varPhi}_{\infty} \right\} \cdot \mathbf{n} = 0 \qquad [2.13]$$

.

,

.....

$$\boldsymbol{\varPhi}_i^* = const \tag{2.14}$$

,

,

.

.

0

Neumann Exterior

Green

Kutta

,

Fig. 2 Layout for LSVP method (Ref.[6])

2.5. Linear Strength Vortex Panel Method(LSVP Method)

 Fig.2
 LSVP
 .
 Linear

 Strength
 Vortex
 Panel
 Method
 .(Ref.[6])

2.5.1.

$$u_{p} = \frac{\gamma_{o}}{2\pi} \left[\tan^{-1} \frac{z}{x - x_{2}} - \tan^{-1} \frac{z}{x - x_{1}} \right] \\ + \frac{\gamma_{1}}{4\pi} \left[z \ln \frac{(x - x_{1})^{2} + z_{2}}{(x - x_{2})^{2} + z_{2}} + 2x \left(\tan^{-1} \frac{z}{x - x_{2}} - \tan^{-1} \frac{z}{x - x_{1}} \right) \right]$$
[2.15]

$$w_{p} = -\frac{\gamma_{0}}{4\pi} \ln \frac{(x-x_{1})^{2} + z^{2}}{(x-x_{2})^{2} + z^{2}} -\frac{\gamma_{1}}{2\pi} \left[-\frac{x}{2} \ln \frac{(x-x_{1})^{2} + z^{2}}{(x-x_{2})^{2} + z^{2}} + (x_{1}-x_{2}) + z \left(\tan^{-1} \frac{z}{x-x_{2}} - \tan^{-1} \frac{z}{x-x_{1}} \right) \right]$$
[2.16]

1 2 j j+1 .
$$\gamma, \gamma_{j+1}$$

.

,

$$u_{p} = -\frac{z}{2\pi} \left(\frac{\gamma_{j+1} - \gamma_{j}}{x_{j+1} - x_{j}} \right) \ln - \frac{r_{j+1}}{r_{j}} + \frac{\gamma_{j} (x_{j+1} - x_{j}) + (\gamma_{j+1} - \gamma_{j})(x - x_{j})}{2\pi (x_{j+1} - x_{j})} \left(\theta_{j+1} - \theta_{j} \right)$$

$$(2.17)$$

$$w_{p} = -\frac{\gamma_{j}(x_{j+1} - x_{j}) + (\gamma_{j+1} - \gamma_{j})(x - x_{j})}{2\pi(x_{j+1} - x_{j})} \ln \frac{r_{j}}{r_{j+1}} + \frac{z}{2\pi} \left(\frac{\gamma_{j+1} - \gamma_{j}}{x_{j+1} - x_{j}} \right) \left[\frac{-(x_{j+1})}{z} + (\theta_{j+1} - \theta_{j}) \right]$$

$$(2.18)$$

$$\begin{pmatrix} u & w \\ u^{a} & w^{a} \\ u^{b} & w^{b} \end{pmatrix} = VOR2DL(\gamma_{j}, \gamma_{j+1}, x_{i}, z_{i}, x_{j}, z_{j}, x_{j+1}, z_{j+1})$$
[2.19]

$$(u, w) = (u^a, w^a) + (u^b, w^b)$$
[2.20]

2.5.2.

- 7) LE TE . x . $x = \frac{-C}{2} (1 - \cos \beta)$ [2.21]
- x
 가
 N
 , N+1
 가

 가
 .
 가
 .

2.5.3.

 $\begin{array}{cccc} 0 & & & \\ \text{(Self-Induced)} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

[2.23]

.

$$(u, w) \cdot n + (U_{\infty}, W_{\infty}) \cdot n = 0$$

$$[2.23]$$

$$\gamma_{j}$$
 γ_{j+1} γ_{j+1} γ_{j} (Self-Induced)
[2.19] .

(Self-Induced)

$$(w, w)_{1} = (u^{a}, w^{a})_{11}\gamma_{1} + [(u^{b}, w^{b})_{11} + (u^{a}, w^{a})_{12}]\gamma_{2} + [(u^{b}, w^{b})_{12} + (u^{a}, w^{a})_{13}]\gamma_{3} + \dots + [(u^{b}, w^{b})_{1,N-1} + (u^{a}, w^{a})_{1N}]\gamma_{N} + (u^{b}, w^{b})_{1N}\gamma_{N+1}$$

$$(2.25]$$

$$(u, w)_1 = (u, w)_{11}\gamma_1 + (u, w)_{12}\gamma_2 + \ldots + (u, w)_{1,N+1}\gamma_{N+1}$$
[2.26]

$$(u, w)_{11}\gamma_{11} = (u^a, w^a)_{11}\gamma_1 (u, w)_1\gamma_{N+1} = (u^b, w^b)_{1N}\gamma_{N+1}$$
[2.27]

,

.

,

$$(u, w)_{1,j} = [(u^{b,} w^{b})_{1,j-1} + (u^{a,} w^{a})_{1,j}]\gamma_{j}$$

$$[2.28]$$

 $\gamma_j = 1$ 7. .

$$a_{ij} = (u, w)_{i,j} \cdot n_i \tag{2.29}$$

N+1
$$\gamma_j$$
7 · .

- 8 -

.

2.5.4.

$$RHS_i$$

$$RHS_i = -(U_{\infty}, W_{\infty}) \cdot (\cos \alpha_i - \sin \alpha_i)$$

$$[2.30]$$

•

2.5.5.

(i=1 -> N)
$$\gamma_{j}(j=1 -> N+1)$$
 7 N
. 7 TE Kutta
. $\gamma_{1} + \gamma_{N+1} = 0$ [2.31]

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1,N+1} \\ a_{21} & a_{22} & \dots & a_{2,N+1} \\ a_{31} & a_{32} & \dots & a_{3,N+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{N,N+1} \\ 1 & 0 & 0 & \dots & 0 & 1 \end{pmatrix} \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \vdots \\ \gamma_N \\ \gamma_N \\ \gamma_{N+1} \end{pmatrix} = \begin{pmatrix} RHS_1 \\ RHS_2 \\ RHS_3 \\ \vdots \\ RHS_N \\ 0 \end{pmatrix}$$
[2.32]

2.5.6.

γ_j 가

.

.

$$Q_{ij} = (Q_{i\infty})_j + \frac{\gamma_j + \gamma_{j+1}}{4}, \quad C_p = 1 - \frac{Q_t^2}{Q_\infty^2}$$
 [2.33]

Kutta-Joukowsky

.

$$\Delta L_j = \rho Q_{\infty} \frac{\gamma_j + \gamma_{j+1}}{2} \Delta c_j \qquad [2.34]$$

•

•

 Δc_j

(Ref.[4]).

Fig. 3 Force distribution (Ref.[4])

$$dN_{u}' = -p_{u}ds_{u}\cos\theta - \tau_{u}ds_{u}\sin\theta \qquad [2.35]$$

$$dA_{u}' = -p_{u}ds_{u}\sin\theta + \tau_{u}ds_{u}\cos\theta \qquad [2.36]$$

$$dN_l' = p_l ds_l \cos \theta - \tau_l ds_l \sin \theta$$
[2.37]

$$dA_{l} = p_{l} ds_{l} \sin \theta + \tau_{l} ds_{l} \cos \theta \qquad [2.38]$$

$$N' = -\int_{LE}^{TE} (p_u \cos\theta + \tau_u \sin\theta) ds_u + \int_{LE}^{TE} (p_l \cos\theta - \tau_l \sin\theta) ds_l$$

$$(2.39)$$

$$A' = \int_{LE}^{TE} (-p_u \sin\theta + \tau_u \cos\theta) ds_u + \int_{LE}^{TE} (p_l \sin\theta + \tau_l \cos\theta) ds_l$$
 [2.40]

LE

$$dM'_{u} = (p_{u}\cos\theta + \tau_{u}\sin\theta)x \ ds_{u} + (-p_{u}\sin\theta + \tau_{u}\cos\theta)y \ ds_{u}$$

$$[2.41]$$

$$dM'_{l} = (-p_{l}\cos\theta + \tau_{l}\sin\theta)x \ ds_{l} + (p_{l}\sin\theta + \tau_{l}\cos\theta)y \ ds_{l}$$

$$[2.42]$$

$$M_{LE}' = \int_{LE}^{TE} [(p_u \cos \theta + \tau_u \sin \theta)x + (-p_u \sin \theta + \tau_u \cos \theta)y] ds_u$$
[2.43]

$$+ \int_{LE}^{TE} \left[\left(-p_l \cos \theta + \tau_l \sin \theta \right) x + \left(p_l \sin \theta + \tau_l \cos \theta \right) y \right] ds_l$$

$$- 10 -$$

$$(2.44)$$

가

•

0

.

2-D

$$c_l \equiv -\frac{L}{q_{\infty}c}, \quad c_d \equiv -\frac{D}{q_{\infty}c}, \quad c_m \equiv -\frac{M}{q_{\infty}c^2}, \quad C_p \equiv -\frac{p-p_{\infty}}{q_{\infty}}, \quad c_f \equiv -\frac{\tau}{q_{\infty}} \quad [2.45]$$

[2.46], [2.47], [2.48]

$$c_{n} = -\frac{1}{c} \left[\int_{0}^{c} (C_{p,l} - C_{p,u}) dx + \int_{0}^{c} (c_{f,u} - \frac{dy_{u}}{dx} + c_{f,l} - \frac{dy_{l}}{dx}) dx \right]$$
[2.46]

$$c_{a} = \frac{1}{c} \left[\int_{0}^{c} (C_{p,u} - \frac{dy_{u}}{dx} - C_{p,l} - \frac{dy_{l}}{dx}) dx + \int_{0}^{c} (c_{f,u} + c_{f,l}) dx \right]$$
[2.47]

$$c_{m_{LE}} = -\frac{1}{c^2} \left[\int_0^c (C_{p,u} - C_{p,l}) x dx + \int_0^c (c_{f,u} - \frac{dy_u}{dx} + c_{f,l} - \frac{dy_l}{dx}) x dx + \int_0^c (C_{p,u} - \frac{dy_u}{dx} + c_{f,l}) y_u dx + \int_0^c (-C_{p,l} - \frac{dy_l}{dx} + c_{f,l}) y_l dx \right]$$
[2.48]

2.7.

Fig. 4

•

$$M'_{LE} = -(x_{cp})N'$$
 x_{cp}

가

가

•

Fig. 4 Moment and Center of Pressure (Ref.[4])

$$M'_{LE} = -\frac{c}{4}L' + M'_{c/4} = -x_{cp}L'$$
[2.49]

•

 cx_{ac}

1/4

가

,

.

Fig. 5

 $M'_{c/4}$ ac ac ac c/4 $c\bar{x}_{ac}$

,

$$M'_{ac} = L'(cx_{ac} - c/4) + M'_{c/4}$$
[2.50]

 $q_{\infty}Sc$

$$-\frac{M'_{ac}}{q_{\infty}Sc} = -\frac{L'}{q_{\infty}S} \left(x_{ac} - 0.25 \right) + -\frac{M'_{c/4}}{q_{\infty}Sc}$$
[2.51]

$$c_{m,ac} = c_1(x_{ac} - 0.25) + c_{m,c/4}$$
[2.52]

Ref.[4]

[2.53]

$$x_{ac} = -\frac{m_0}{a_0} + 0.25 \tag{2.53}$$

.

Fig. 6 Moment about leading edge (Ref.[4])

$$[2.54]$$
 . A_0

$$A_1$$
 Ref. [4] p.307
 $c_{mle} = -\frac{\pi}{2} \left(A_0 + A_1 - \frac{A_2}{2} \right)$ [2.54]

 $c_l = \pi (2A_0 + A_1)$

,

$$c_{mle} = -\left[\frac{-c_l}{4} + \frac{\pi}{4}(A_1 - A_2)\right]$$
[2.55]

1/4

$$c_{m,c/4} = c_{mie} + \frac{c_l}{4}$$
 [2.56]

$$c_{m,c/4} = \frac{\pi}{4} (A_2 - A_1)$$
[2.57]

, $A_{1,} A_{2}$

 $C_{m,c/4}$

$$x_{cp} = -\frac{M'_{LE}}{L'} = -\frac{c_{mle}c}{c_l}$$
[2.58]

$$x_{cp} = \frac{c}{4} \left[1 + \frac{\pi}{c_l} (A_1 - A_2) \right]$$
[2.59]

.

[2.59]

[2.57]

(Center of Pressure)

- 13 -

•

,

,

,

SplineSpline3spline3 spline(cubic spline interpolation) $[x_0, x_n]$ f(x)73f(x). $[x_i, x_{i+1}]$ 3[2.60]7

$$f_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + b_i(x - x_i) + d_i, \qquad i = 0.1.2..., n-1$$
[2.60]

$$f_i(x_i) = y_i, \quad i = 0, 1, 2, \dots, n-1$$
 [2.61]

$$f_i(x_{i+1}) = y_i$$
, $i = 0, 1, 2, \dots, n-1$ [2.62]

1

2

.

$$f_{i-1}'(x_i) = f_i'(x_i), \quad i = 0, 1, 2, \dots, n-1$$
 [2.63]

$$f_{i-1}''(x_i) = f_i''(x_i), \quad i = 0, 1, 2, \dots, n-1$$
 [2.64]

$$y_i = d_i \tag{2.65}$$

$$y_{i+1} = a_i h_i^3 + b_i h_i^2 + c_i h_i + d_i$$
[2.66]

[2.65], [2.66] ,

•

- 14 -

$$b_{i} = -\frac{\sigma_{i}}{2}, \qquad a_{i} = -\frac{\sigma_{i+1} - \sigma_{i}}{6h_{i}}, \qquad c_{i} = -\frac{y_{i+1} - y_{i}}{h_{i}} - \frac{2h_{i}\sigma_{i} + h_{i}\sigma_{i+1}}{6}$$
[2.68]

$$[x_i, x_{i+1}]$$
 3 [2.69] .

$$f_{i}(x) = -\frac{\sigma_{i}}{6} \left\{ -\frac{(x_{i+1} - x)^{3}}{h_{i}} - h_{i}(x_{i+1} - x) \right\} + -\frac{\sigma_{i+1}}{6} \left\{ -\frac{(x - x_{i})^{3}}{h_{i}} - h_{i}(x - x_{i}) \right\} + y_{i} \left\{ -\frac{x_{i} + 1 - x}{h_{i}} \right\} + y_{i+1} \left\{ -\frac{x - x_{i}}{h_{i}} \right\}, \qquad i = 1, 2, \dots, n-1$$

$$[2.69]$$

$$\sigma_0, \sigma_1, \dots, \sigma_n \tag{2.70}$$

$$f'_{i}(x) = -\frac{\sigma_{i}}{6} \left\{ -\frac{3(x_{i+1} - x)^{2}}{h_{i}} + h_{i} \right\} + -\frac{\sigma_{i+1}}{6} \left\{ -\frac{3(x - x_{i})^{2}}{h_{i}} - h_{i} \right\} + \Delta y_{i}$$

$$[2.71]$$

$$f'_{i}(x_{i}) = -\frac{\sigma_{i}}{6}(-2h_{i}) + -\frac{\sigma_{i+1}}{6}(-h_{i}) + \Delta y_{i}$$
[2.72]

$$f_{i-1}'(x_i) = -\frac{\sigma_{i-1}}{6}(h_{i-1}) + -\frac{\sigma_i}{6}(2h_{i-1}) + \Delta y_{i-1}, \qquad \Delta y_i = \begin{pmatrix} -y_{i+1} - y_i \\ h_i \end{pmatrix}$$
[2.73]

$$x = x_i \qquad 1 \qquad 1$$
[2.74]

.

$$h_{i-1}\sigma_{i-1} + 2(h_{i-1} + h_i)\sigma_i + h_i\sigma_{i+1} = 6(\varDelta y_i - \varDelta y_{i-1}), \qquad i = 1, 2, 3, \dots, n-1$$
[2.74]

'Non-Uniform Rational B-spline' B-spline 가 non-uniform . Rational NURB . B-spline (Affine Space) **B**-spline L n domain partition knot u_i . u가 가 d_i **B**-spline d(u)knots • • $[2.75] , \qquad \lambda = [u_I, u_I + 1]$ NURB u∈λ $S(u) = \sum_{i=0}^{p} d_i N_i^n(u); \quad d_i \in P^3$ [2.75] N_i^n [2.76] recursion .

 $N_{l}^{n}(u) = \frac{u - u_{l-1}}{u_{l+n-1} - u_{l-1}} N_{l}^{n-1}(u) + \frac{u_{l+n} - u}{u_{l+n} - u_{l}} N_{l+1}^{n-1}(u)$ [2.76]

Recursion

,

$$N_i^0(u) = \begin{array}{ccc} 1 & \text{if } u_{i-1} \le u < u_i \\ 0 & else \end{array}$$

$$(2.77)$$

.

, explicit function rational B-spline affine

,

$$S(u) = -\sum_{i=0}^{p} \frac{w_i d_i N_i^n(u)}{\sum_{i=0}^{p} w_i N_i^n(u)}; \quad d_i \in P^3.$$
[2.78]

$$S(u) = \sum_{i=0}^{p} d_i R_i^n(u),$$
 여기에서 $R_i^n(u) = \frac{w_i N_i^n(u)}{\sum_{j=0}^{p} w_j N_j^n(u)}$ [2.79]

- 16 -

3.1.

Fig. 7 Schematic chart showing work flow, in brevity

3.2.1.

(Preliminary Approach) , T/C T/C 7^{1} Fourier 7^{1} [3.1] $f(t) = a_{0} + c\cos(\omega t + \phi)$ [3.1]

c a_0 $\omega \pi (rad/s)$ 7 ,

$$f(t) = a_0 + a_1 \cos(\omega t) + b_1 \sin(\omega t)$$

$$[3.2]$$

$$a_1 = c\cos\phi, \qquad b_1 = -c\sin\phi \tag{3.3}$$

$$c = \sqrt{(a_0)^2 + (a_1)^2}$$
[3.4]

•

$$(t_{2}, Y_{2}), \dots, (t_{N}, Y_{N}) ,$$

$$S = \sum_{i=1}^{N} (Y_{i} - y_{i})^{2} = \sum_{i=1}^{N} [Y_{i} - (a_{0} + a_{1}\cos(\omega t_{i}) + b_{1}\sin(\omega t_{i}))]^{2}$$

$$[3.5]$$

S

$$\begin{bmatrix} N & \sum_{i=1}^{N} \cos(\omega t_i) & \sum_{i=1}^{N} \sin(\omega t_i) \\ \sum_{i=1}^{N} \cos(\omega t_i) & \sum_{i=1}^{N} \cos^2(\omega t_i) & \sum_{i=1}^{N} \cos(\omega t_i) \sin(\omega t_i) \\ \sum_{i=1}^{N} \sin(\omega t_i) & \sum_{i=1}^{N} \sin(\omega t_i) \cos(\omega t_i) & \sum_{i=1}^{N} \sin^2(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} Y_i \\ \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} Y_i \\ \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \cos(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} Y_i \\ \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} Y_i \\ \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} Y_i \\ \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \cos(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} Y_i \cos(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \begin{bmatrix} a_0 \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \end{bmatrix} \end{bmatrix} \begin{bmatrix} a_0 \\ \sum_{i=1}^{N} Y_i \sin(\omega t_i) \\ \sum_{i=1}^{N} Y_i \sin(\omega$$

- 18 -

Fig. 8 NACA64a204 and its Fourier approximation, not in 1:1 ratio

Fig. 9 Lower airfoils close to NACA64a204, not in 1:1 ratio

.

 Fig. 9
 .
 7↓
 MILEY

 M06-13-128
 Fig.10
 .
 Ref.[5]

3.2.2	NURB
	(splinefit.f) Morphing
0.01 x	Fig.11 .
가 L	E
LE TE	
	pressure ripple .
NURB(Non-Uniform Rational	al B-splines) (NURB.f) Fig.13
. NURB	LE TE
7	·•
가	knot (1000) NURB
Х	У .
Fig.12 NURB	
LE TE	
	LE TE .
	. LE TE
	. NURB LE. TE 가
LE TE	Fig.14
	5 ¹
·	
Fig 15 XFOII	Miley(upper)-NACA64a204(lower) (Miley-mix)
115.115 M OIL	
Morphing	Cp . ATOL
diagram of an 71	Stage
discrepancy /	

2

Fig.11 Airfoils created by spline, and piecewise polynomial at LE & TE

Fig.12 Cp distribution of Fig. 11 for all morphing stages

Fig.13 NURB created airfoils for morphing stages

Fig.14 Cp distribution of Fig.13

Fig.16 Reconfiguration of Miley-mix airfoil at the mid section

- 24 -

3.2.3.

3.2.4. $(x_{cp} \text{ and } x_{ac})$

6

.'

•

가 가

Ref.[10] [3.7]

$$c_m = -\int_0^c (C_{p,u} - C_{p,l}) x dx$$
[3.7]

.

•

Fig.17 Positional total moment coefficient using Eq. [3.7]

•

Morphing

mean chord line

Fig.18 Cp decomposition and moment coefficient relation

가

Fig.18Cp[3.9]. upper

$$Cpy = Cp \,\cos\theta = Cp \,\left(\frac{-dx}{ds}\right) \tag{3.8}$$

[3.8]

$$Cpx = Cp \sin \theta = Cp \left(\frac{-dy}{ds} \right)$$
[3.9]

$$(x_{fl})$$
 , () $(C_{m, @x_{fl}})$ [3.10]

$$c_{m, \emptyset x_{\mu}} = \sum_{x=0}^{1} c_{m}$$

= $\sum_{x=0}^{1} [(C_{fy} \times x') + (C_{fx} \times y')]$
= $\sum_{x=0}^{1} [(C_{p} \cos \theta \times x') + (C_{p} \sin \theta \times y')]$
= $\sum_{x=0}^{1} [(C_{p} \frac{dx}{ds} \times x') + (C_{p} \frac{dy}{ds} \times y')]$ [3.10]

•

[2.48]

•

,

•

[3.7]

[3.10]

•

4. (Conclusion)

,

Morphing NURB . NURB . NURB Linear Strength Vortex Panel . 가 XFOIL . . 가 가 (Morphing 4) 가 Morphing • discrepancy 가 . . [3.7] 가 х . [2.48] McCormick Anderson

.

•

,

[3.7] ,

Morphing 가 가, Morphing wing 가 .

5. (Reference)

- Prock, C. Brian 2 , 2002, "Morphing Airfoil Shape Change Optimization with Minimum Actuator Engery as an Objective", AIAA-2002-5401
- [2] Gano, E. Shawn. and Renanud, E. John, 2002, "Optimized Unmanned Aerial Vehicle with Wing Morphing for Extended Range and Endurance", AIAA-2002-5668
- [3] Cadogan, David 4 , 2003, "Inflatable and Rigidizable Wing Components for Unmanned Arial Vehicles", AIAA-2003-1801
- [4] Anderson, D. John, 2001, Fundamentals of Aerodynamics, 3rd Ed., McGraw-Hill
- [5] http://www.aae.uiuc.edu/m-selig/ads/coord_database.html
- [6] Katz, Joseph and Plotkin, Allen, 2001, Low-Speed Aerodynamics, 2nd Ed., Cambridge Press
- [7] Abbott, H. Ira and Von Doenhoff, E. Albert, 1945, "Summary of Airfoil Data", NACA Report No.824
- [8] , 2002, , 源和
- [9] Farin, Gerald, 1999, NURBS from Projective Geometry to Practical Use, 2nd Ed., AK Peters
- [10] McCormick W. Barnes, 1995, Aerodynamics Aeronautics and Flight Mechanics, 2nd Ed., John Wiley & Sons

С ••••••	OPEN(UNIT=Z, FILE=NAMECHAR(1:BLANK), STATUS='OLD')	10 CONTINUE
C * PROGRAM FOURIER APPROXIMATION and GAUSS ELIMINATION C * LOWFOURIER (CALL COORDINATE(ZLX V)	BETURN
C ************************************	L = L = 1	END
C C	CALL MINIMUM(X.L.L.MIN) CALL MATDINSET(X.V.L.L.MIN A)	C
C + DWHAT THIS PROGRAM DOES:	Contract Print & Burrary & Cong () Contract () Cong ()	С
C * 1548	N = 3	C • SUBROUTINE MATRIXSET C • CALCULATE COMBONENTS OF EXCEPTE ADDROVEMATION MATRIX
C * http://www.aae.uiuc.edu/m=selig/ads/coord_database.html	ERROR = .FALSE.	C - CALCULATE CONFORMATION FOUNDATION ANALYTICA SIA TRAC
C * FILE: coord_seligFmt.zin (1548 FILES). FILELIST.TXT WAS MADE C * USDNC CODY_AND_BASTE OF THE DIPECTORY	DROWS = 3	C
C * USING COPT-AND-TASTE OF THE DIRECTORY. C * naca64a204.dat HAS BEEN ADDED INTO THE DIRECTORY WITH ALL	DOULS = 4	SUBROUTINE MATRIXSET(X,Y,LLMINA)
C * FILES FROM coord_seligFmt.zip.	10 IF (PIVOT.LT.N.AND.NOT.ERROR) THEN CALL OPPOPPA DROWS DOOL S N DROOT EPIDOD	INTEGED F F LANS IN
C * THIS PROGRAM ESTIMATES CURVES BY CALCULATING AIRFOIL	IF (NOT.ERROR) THEN	INTEDED L L LAURA D REAL X(400), V(400), A(3.4), PI
C • COORDINATE DATA AND RETURNS VALUES INTO 'LOWFOURIER.TXT'.	CALL ELIM(ADROWS,DCOLS,N,PIVOT)	
C * 2)FUNCTIONS:	END IF	D = L = LNUN = 1 PI=3.141592
C * -MAIN FUNCTION	GO TO 10	
C * SUBROUTINE C * FOURIER: READ COORDINATE INTO ARRAY AND CALCULATE FOURIER	END IF	A(1,1) = 0 A(1,2) = 0
C * MATRIXSET: OBTAIN ELEMENT OF AUGUMENTED MATRIX Ax=B in 3+4	IF (ERROR) THEN	A(1,3) = 0
C * ORDER MATHIX CALCULATION FOR GAUSS ELIMINATION C * ELIM: MATRIX CALCULATION FOR GAUSS ELIMINATION	PIGNT*, 'NO UNIQUE SOLUTION'	A(2,1) = 0 A(2,2) = 0
C * BACKSB: MATRIX CALCULATION FOR GAUSS ELIMINATION	CALL BACKSB(ADROWS, DCOLS, N, S)	A(2,3) = 0
C * ROUTAB ROUT OF ALAND BERETURNING C C *	OPEN(UNIT=20.FILE='LOWFOURIER.TXT'.STATUS='NEW')	A(32) = 0
C *	PRINT 30. S(1).S(2).S(3).S(4).FILENAME	A(3,3) = 0
C * 0REFERENCE:	WRITE(2020) S(1)S(2)S(3)S(4)FILENAME 30 FORMAT(1X,F9.6.1X,F9.6.1X,F9.6.2X,A)	A(1,4) = 0 A(2,4) = 0
C * "STRUCTURED FORTRAN 77 FOR ENGINEERS AND SCIENTIST 5TH ED."	END IF	A(3,4) = 0
C * DELORES M. ETTER. ADDISON-WESLEY, 1997 C * "NUMERICAL METHODS FOR ENGINEERS/KOREAN)"	300 CONTINUE	DO 10 I-LMIN 1.
C * LEE. KWAN-SOO. WON-WHA. 2002	END	A(1,2)=A(1,2)+COS(P1+X(I))
C ************************************	C	- A(1.2) = A(1.2) = SIN(P1 * X(1)) = A(2.2) =
C		A(2.3)=A(2.3)*(COS(P[*X(D)*SIN(P[*X(D)))
C * COMMON CONSTANTS C * LUC COUNTING INDEX 1: NUMBER OF COORDINATE X OR X	C + SUBBOLITENE COORDINATE	A(3.3)=A(3.3)*(SIN(PI*X(J))**2) A(1.4)=A(1.4)*X(J)
C * LMIN: INDEX OF X HAVING THE MINIMUM MAGNITUDE	C * THIS ROUTINE READS X.Y COORDINATES INTO X AND Y ARRAYS	A(2,4)=A(2,4)*(Y(I)*COS(PI*X(I)))
C * N: NUMBER OF EQUATION. IN HERE: N+3 C * 2: UNIT NUMBER FOR CONTROLLING FILE	C	A(3.4)=A(3.4)=(Y(D+SIN(P1+X(D))) 10 CONTINUE
C * BLANK: CONSTANT FOR CONTROLLING FILE STRING	SUBROUTINE COORDINATE(Z,L,X,Y)	
C * NAMECHARFILE NAME STRING FOR READING FILE SETS FROM A LIST C * FILETOP: FOR READING UNKNOWN LENGTH OF STRING IN A ARBEOR.	INTEGER Z. I. I.	A(1,1)=REAL(D) A(2,1)=A(1,2)
C * FILE IN THE FIRST LINE	REAL X(400). Y(400)	A(3.1)=A(1.2)
C * DROWS,DCOLS: NUMBER OF ROWS AND COLUMS C * X X: COODDINATE ADDAY OF ADDOILS LIMPTED IN SIZE BY MAX 400	CHARACTER*(40) FILETOP	A(3,2)=A(2,3)
C * A: 3 BY 4 MATRIX FOR CALCULATING FOURIER APPROXIMATION COEF.	READ(Z,*) FILETOP	RETURN
C * S: FOURIER APPROXIMATION COEFFICIENTS RETURNED	L = 1 10 READ(2 + END=15) X(L) X(L)	END
	L = L + 1	
C + MAIN FUNCTION	GO TO 10 15 RETURN	C + SUBROUTINE ORDER
C * THIS FUNCTION OPEN FILES. CALLS SUBROUTINES AND PERFORMS GAUSS	END	C * MATRIX CALCULATION
C * ELIMINATION. A FILE 'LOWERFOURIERTXT' IS CREATED.	C	C
Č	C	SUBROUTINE ORDER(A,DROWS,DCOLS,N,PIVOT,ERROR)
INTEGER I. I. Z. L. I.MIN. BLANK, DROWS, DCOLS, N. PIVOT	C * SUBROUTINE MINIMUM C * THIS ROUTINE RECEIVES X(L), L FROM THE MAIN FUNCTION.	INTEGER DROWS, DCOLS, N. ROW, RMAX, PIVET K
REAL X(400), Y(400), A(3,4), S(4)	C * THEN THE MINIMUM VALUE OF X(L) AND L ARE RETURNED TO MAIN.	REAL A(DROWS,DCOLS), TEMP
LOGICAL ERROR CHARACTER+(25) NAMECHAR	C	LOGICAL ERROR
CHARACTER*(25) FILENAME	SUBROUTINE MINIMUM(X,L,LMIN)	RMAX = PIVOT
OPENUNIT=2. FILE='FILELIST.TXT', STATUS='0(D')	INTEGER I. L. LMIN	DO 10 ROW=PIVOT+1.N IF (ARS(A(ROW.PIVOT))GT, ARS(A(RMAX.PIVOT))) RMAX = ROW
	REAL X(400), MIN	10 CONTINUE
DO 300 I=1.1548 READC2+) NAMECHAR	MIN = X(1)	IF (ABS(A(RMAX.PIVOT)).LT, L0E-05) THEN
BLANK = INDEX(NAMECHAR.' ')		ERROR = .TRUE.
FILENAME = NAMECHAR(1:BLANK)	DO 10 1-2. L IF (X(I) LT MIN) THEN	ELSE: IF (RMAX NE PIVOT) THEN
Z = 5	MIN = X(I)	DO 20 K=1.N=1
	LMIN = I END IE	TEMP = A(RMAX,K) A(PMAX,K) = A(PWOT,K)
	REAL IN	Addataa, ay = addiyy t, ay

```
A(PIVOT.K) = TEMP
                                                                                    SORTED = .FALSE.
        CONTINUE
                                                                                        COEFFICIENT SORTING PROGRAM/USING BUBBLE-SORTING ALGORITHMD
                                                                                    C+
                                                                                                                                                                                   END IF
  20
      END IF
                                                                                    Ca
                                                                                                              COEFFSORT.f
                                                                                                                                                                            20 CONTINUE
    END IF
                                                                                    C* THIS PROGRAM SORTS COEFFICIENTS(LOWFOURIER.TXT) CREATED BY
                                                                                                                                                                               LAST = LAST - 1
                                                                                    C* LOWFOURIER.f AND RETURNS LOWFOURIERSORT.TXT. COEFFICIENTS ARE
                                                                                                                                                                               GO TO 15
    RETURN
                                                                                    C* STORED AS CF AND FILE AND FILE NAMES AS FNAME. AFTER SORTING,
                                                                                                                                                                              END IF
    END
                                                                                    C* COEF AND FOILNAMES ARE RETURNED IN ASCENDING ORDER
                                                                                    Circles.
                                                                                                                                                                              RETURN
                                                                                    Ca
                                                                                                                                                                              END
                                                                                    INTEGER I
C * SUBROUTINE ELIM
  * GAUSS ELIMINATION TO OBTAIN COEFFICIENTS
                                                                                         REAL CF(1548.4),COEF(1548.4)
                                                                                                                                                                         C PROGRAM END
                                                                                         CHARACTER*(18) FNAME(1548)
                                                                                         CHARACTER*(18) FOILNAME(1548)
    SUBROUTINE ELIM(A,DROWS,DCOLS,N,PIVOT)
                                                                                                                                                                         C ------
                                                                                         OPEN(UNIT=10.FILE='LOWFOURIER.TXT'.STATUS='OLD')
                                                                                                                                                                                             PROGRAM REVERTING SORT
    INTEGER DROWS, DCOLS, N. COL, ROW, PIVOT
                                                                                                                                                                                                  REVERTSORT.f
    REAL A(DROWS,DCOLS), FACTOR
                                                                                         DO 50 I=1.1548
                                                                                                                                                                         D. 50 F11594
READID(s) CF(1)).CF(12).CF(13).CF(14).FNAME(I)
PRINT 20. CF(11).CF(12).CF(13).CF(14).FNAME(I)
20 FORMAT(1X,F9.6).X,F9.6).X,F9.6,1X,F9.6,2X,A)
                                                                                                                                                                         C ......
    DO 10 ROW=PIVOT=1.N
FACTOR = A(ROW.PIVOT)/A(PIVOT,PIVOT)
A(ROW.PIVOT) = 0.0
                                                                                                                                                                         C * THIS PROGRAM REVERT CONTER-CLOCKWISE ORDER OF AIRFOIL DATA TO
                                                                                                                                                                         C * CLOCKWISE ORDER WHILE COUNTING FROM TOP TO BOTTOM
                                                                                      50 CONTINUE
                                                                                                                                                                         C *
      DO 5 COL-PIVOT+LN+1
                                                                                                                                                                         A(ROW.COL) = A(ROW.COL) - A(PIVOT.COL)+FACTOR
                                                                                         CALL COEFFSORT/FNAME,CF,FOILNAME,COEF
     CONTINUE
 10 CONTINUE
                                                                                         DO 100 1-1.1548
                                                                                         OPEN(UNIT=12.FILE='LOWFOURIERSORT.TXT'.STATUS='NEW')
PRINT 80. COEF(L1).COEF(L2).COEF(L4).FOILNAME(D
                                                                                                                                                                         C * MAIN FUNCTION
    RETURN
    END
                                                                                         WRITE (12.80). COEF(L1).COEF(L2),COEF(L3),COEF(L4),
FOILNAME(I)
                                                                                                                                                                         C-
                                                                                                                                                                              INTEGER I. L.
                                                                                      80 FORMAT(1X,F9.6,1X,F9.6,1X,F9.6,1X,F9.6,2X,A)
                                                                                                                                                                              REAL PT(300,2), NEWPT(300,2)
                                                                                                                                                                              CHARACTER*(25) FILENAME, FILENAMEMAKE
                                                                                     100 CONTINUE
C * SUBROUTINE BACKSB
                                                                                         END
                                                                                                                                                                              PRINT*, 'FILE NAME, DATA TO REVERT?'
  * BACK SUBSTITUTION FOR GAUSS ELIMINATION
                                                                                    C---
                                                                                         SUBROUTINE COEFFSORT(FNAME.CF.FOILNAME.COEF)
                                                                                                                                                                              PRINT*, 'CASE SENSITIVE, INPUT EX) stagel.dat'
                                                                                                                                                                              READ*, FILENAME
                                                                                                                                                                              PRINT*, 'REVERTED DATA FILENAME TO MAKE?'
    SUBROUTINE BACKSB(A,DROWS,DCOLS,N,S)
                                                                                         INTEGER I
                                                                                         REAL CF(1548.4).COEF(1548.4)
                                                                                                                                                                              PRINT*, 'CASE SENSITIVE, INPUT EX) stagelrev.dat'
                                                                                         REAL TEMP1.TEMP2.TEMP3.TEMP4
                                                                                                                                                                              READ*, FILENAMEMAKE
    INTEGER DROWS, DCOLS, N. ROW, COL
                                                                                         CHARACTER*(18) FNAME(1548)
CHARACTER*(18) FOILNAME(1548)
CHARACTER*(18) TEMPNAME(1548)
    REAL A(DROWS, DCOLS), S(DROWS)
                                                                                                                                                                              OPEN(UNIT=2.FILE=FILENAME.STATUS='(0.D')
OPEN(UNIT=3.FILE=FILENAMEMAKE.STATUS='NEW')
    DO 20 ROW = N.1.-1
      DO 10 COL=N. ROW+1. -1
                                                                                         LOGICAL SORTED
         A(ROW.N+1) = A(ROW,N+1) - S(COL)+A(ROW,COL)
                                                                                                                                                                              CALL COORDINATE(LPT)
      CONTINUE
                                                                                         DO 10 I=1,1548
                                                                                                                                                                                = L - 1
      S(ROW) = A(ROW,N+1)/A(ROW,ROW)
                                                                                           COEF(L1)=CF(L1)
                                                                                                                                                                              DO I-LL
 20 CONTINUE
                                                                                           COEF(L2)=CF(L2)
                                                                                                                                                                                NEWPT(L-I+1.1)=PT(L1)
                                                                                           COEF(L3)=CF(L3)
                                                                                                                                                                                NEWPT(L-I+1,2)=PT(I,2)
                                                                                           COEF(L4)=CF(L4)
FOILNAME(I)=FNAME(I)
    RETURN
                                                                                                                                                                              ENDDO
    END
                                                                                                                                                                              DO I=1.L
PRINT 20. NEWPT(L1).NEWPT(L2)
WRITE(3.20) NEWPT(L1).NEWPT(L2)
                                                                                       10 CONTINUE
                                                                                         SORTED = .FALSE.
 * SUBROUTINE ROOTAB
                                                                                                                                                                            20 FORMAT(1X,F10.5,2X,F10.5)
                                                                                         FIRST=1
  * C = ROOT(A*2 * B*2)
                                                                                         LAST=1547
                                                                                                                                                                              ENDDO
                                                                                                                                                                              END.
                                                                                       15 IF(.NOT.SORTED) THEN
SORTED = .TRUE,
DO 20 I=FIRST.LAST
    SUBROUTINE ROOTAB(S)
                                                                                                                                                                         C * SUBROUTINE COORDINATE
    REAL S(4), Y
                                                                                             IF (COEF(L4).GT.COEF(I+1,4)) THEN
                                                                                                TEMP1=COEF(L1)
                                                                                                                                                                         C-----
    Y = S(2)*S(2) + S(3)*S(3)
                                                                                                TEMP2=COEF(L2)
                                                                                                                                                                              SUBROUTINE COORDINATE(L,PT)
                                                                                                TEMP3-COEF(L3)
    S(4)=SQRT(Y)
                                                                                                TEMP4=COEF(L4)
                                                                                                                                                                              INTEGER L
                                                                                                TEMPNAME(D=FOILNAME(D)
    RETURN
                                                                                                                                                                              REAL PT(300,2)
                                                                                                COEF(L1)=COEF(1+1.1)
    END
                                                                                                COEF(L2)=COEF(1+1,2)
                                                                                                COEF(L3)=COEF(1+1.3)
                                                                                                                                                                            10 READ(2.*.END=15) PT(L,1), PT(L,2)
C PROGRAM END
                                                                                                COEF(L4)=COEF(1+1.4)
                                                                                                                                                                               L = L + 1
                                                                                                FOILNAME(D=FOILNAME(I+1)
                                                                                                                                                                              GO TO 10
                                                                                                COEF(1+1.1)=TEMP1
COEF(1+1.2)=TEMP2
                                                                                                                                                                            15 RETURN
                                                                                                                                                                              END
                                                                                                COEF(1+1,3)=TEMP3
                                                                                                COFE(1+1.4)=TEMP4
                                                                                                                                                                         C PROGRAM END
                                                                                                FOILNAME(1+1)=TEMPNAME(I)
```

***** PROGRAM SPLINE FITTING AND REGENERATION OF AIRFOIL . SPLINEFIT.f * SPLINE ROUTINE SOURCE: PROF. SA, JONGYUP * MAIN FUNCTION COMMON M.NI.AI(4300),DATAX(300),X(300),Y(300) INTEGER I. L. LMIN, LIMIT REAL PT(300.2), NEWPT(300.2), DX CHARACTER*(25) FILENAME, FILENAMEMAKE PRINT*, FILE NAME FOR SPLINE AND FOR NEW COORDINATES, FULL FORMAT?' READ*. FILENAME PRINT*, FILE NAME TO BE CREATED?" READ*, FILENAMEMAKE OPEN(UNIT=2, FILE=FILENAME, STATUS='OLD') OPEN(UNIT=3, FILE=FILENAMEMAKE, STATUS='NEW') CALL COORDINATE(L.PT) L = L - 1CALL MINIMUM(PT.L.LMIN) LIMIT = LMIN CALL SORT(LIMIT.PT.NEWPT) N1-LIMIT AI(2.1)=0 AI(2.NI)=0 PRINT*, 'DX?(0<DX<1)' READ*, DX DO I-LNI DATAX(D=NEWPT(L1) AI(LD=NEWPT(L2) ENDDO M1 = IFIX((DATAX(N1)-DATAX(1))/DX) M = M1 + 1DO 10 I =1.M+1 X(I) = DATAX(I) + DX+(I-1)10 CONTINUE CALL SPLINE WRITE(6,200) WRITE(6,210) (LX(I),Y(D,I=1,M+1) WRITE(3,220) (X(I),Y(I),I=1,M+1) STOP 200 FORMATUH .'SOLUTION './2X.'NO',8X,'POINT X',5X,'Y VALUE') 210 FORMATUX.IX.3X.F10.57X.F10.5) 220 FORMATUX.F10.42X.F10.4) END * SUBROUTINE COORDINATE SUBROUTINE COORDINATE(L.PT) INTEGER L REAL PT(300,2) CHARACTER*(40) FILETOP

READ(2.*) FILETOP 10 READ(2,*END=15) PT(L,1), PT(L,2) L = L + 1GO TO 10 15 RETURN END C----C * SUBROUTINE MINIMUM SUBROUTINE MINIMUM(PT.L.LMIN) INTEGER I. L. LMIN REAL PT(300,2), MIN MIN = PT(1,1)DO 10 1=2, L IF (PT(L),LT,MIN) THEN MIN = PT(L1)LMIN = IEND IF 10 CONTINUE RETURN END C * SUBROUTINE SORT C-----SUBROUTINE SORT(LIMIT, PT, NEWPT) INTEGER I. LIMIT. LAST. FIRST REAL PT(300.2). NEWPT(300,2) REAL TEMP1.TEMP2 LOGICAL SORTED DO 10 I=1.LIMIT NEWPT(L1)=PT(L1) NEWPT(L2)=PT(L2) 10 CONTINUE SORTED = .FALSE. FIRST=1 LAST=LIMIT-1 15 IF(NOT.SORTED) THEN SORTED = .TRUE. DO 20 I-FIRSTLAST IF (NEWPT(L1).GT.NEWPT(1+1,1)) THEN TEMP1=NEWPT(L) TEMP2=NEWPT(L2) NEWPT(L1)=NEWPT(L2) NEWPT(L1)=NEWPT(L+1,1) NEWPT(L2)=NEWPT(L+1,2) NEWPT(I+1.1)=TEMP1 NEWPT(1+1,2)=TEMP2 SORTED = .FALSE. END IF 20 CONTINUE LAST = LAST = 1 GO TO 15 END IF RETURN END C-----

C

C * SUBROUTINE SPLINE SUBROUTINE SPLINE COMMON M.NI.AI(4300).DATAX(300).X(300),Y(300) DIMENSION DELFICIOD/DELXICIOD/BCI00) DATA B(1),DELXI(1)/1.0,0.01/ N = N1 - 1DO 10 I = 2.NI DELXED = DATAX(D - DATAX(I-1) DELFI(D = (AI(1,D-AI(1,I-1))/DELXI(D 10 CONTINUE DO 20 I =2.N A(2D) = 3.0*(DELFI(1+1)*DELXI(D) * DELFI(D*DELXI(1+1)))B(D) = 2.0*(DELXI(D) * DELXI(1-1)) 20 CONTINUE DO 30 I =2.N G = DELXI(1+1)/B(1-1)B(D = B(D = G*DELXI(I-1))AI(2.D) = AI(2.D) - G*AI(2.I-1)30 CONTINUE DO 40 I =N.2.-1 AI(2,D) = (AI(2,D) - DELXI(D*AI(2,I*1))/B(D)40 CONTINUE DO 50 I =1.N F1 = DELF1(1+1) F2 = AI(21) + AI(2J+1) - 2.0*F1 F3 = DELXI(1+1)AI(3,D = (F1 - AI(2,D - F2)/F3 AI(4.I) = F2/(F3**2)50 CONTINUE WRITE(6,200) DO 60 I =1.NI WRITE(6.210) LAI(1,D,AI(2,D,AI(3,D,AI(4,D 60 CONTINUE DO 70 K =1,M+1 1 - 1 IF(X(K).GE.DATAX(I)) GO TO 1000 DO 80 I =L1.-1 IF(X(K).GE.DATAX(J)) GO TO 1100 80 CONTINUE 1000 DO 90 I =1.N IF(X(K) J.T. DATAX(J+1)) GO TO 1100 90 CONTINUE 1 - N1100 1 - 1 $\begin{array}{l} DIFX = X(K) = DATAX(I) \\ Y(K) = AI(I,J) + DIFX*(AI(2,J) + DIFX*(AI(3,J) + DIFX*AI(4,D)) \end{array}$ 70 CONTINUE RETURN 200 FORMATUH .'THE COEFFICIENT OF SPLINE POLYNOMIAL'/ 2X.'NO.'.10X.'A0'.10X.'A1'.10X.'A2'.10X.'A3'./) 210 FORMAT(1X,I3,2X,4F13.4) END C-----C PROGRAM END

***** PROGRAM NURB CURVE FITTING NURB.f . * NURB ROUTINE SOURCE: PROF. SA. JONGYUP C * MAIN FUNCTION COMMON X(300), Y(300), T(500), CNIK(500), H(300) INTEGER L L REAL KNOT OPEN(UNIT=2, FILE='naca64a204Ldat', STATUS='0ED') CALL COORDINATE(L,X,Y) DO I = 1, L H(D = 1.ENDDO DO I = 1, 300 CNIK(I) = 0.ENDDO DO I = 1, 300 T(I) = 0.ENDDO N = LK = 2KNOT = 0.005 DO I = 1, N+K+1 IF(00.LE.0-1)).AND.(0-1).LT.K)) THEN T(I) = 0ELSE IF((K.LE.(I-1)).AND.((I-1).LE.N)) THEN T(D = (I-1) - K + 1ELSE IF((N.L.T.(I-1)),AND.((I-1),LE,N+K)) THEN T(D = N - K + 2)ENDF ENDDO OPEN(UNIT=10, FILE='naca64a204lf.dat', STATUS='UNKNOWN') DO U = 0, N-K+2, KNOT TX = 0.TY = 0.HINIK = 0.CALL CALCNIK(N, K, U, L) DO I = 1. N+1 TX = TX + CNIK(D + X(D)) TY = TY + CNIK(D + Y(D))HINIK = HINIK + H(I) + CNIK(I) ENDDO TX = TX / HINIK TY = TY / HINIK WRITE(10, 200) TX, TY 200 FORMAT(1X,F7.4,2X,F9.6) ENDDO CLOSE(10, STATUS='KEEP') STOP END * SUBROUTINE COORDINATE * THIS ROUTINE READS X.Y COORDINATES INTO X AND Y ARRAYS SUBROUTINE COORDINATE(L,X,Y) INTEGER L L REAL X(300), Y(300) CHARACTER*(40) FILETOP

10 READ(2,*,END=15) X(L), Y(L) L = L + 1GO TO 10 15 RETURN END C-----SUBROUTINE CALCNIK(N, K, U, L) COMMON X(300), Y(300), T(500), CNIK(500), H(300) INTEGER I DIMENSION TEMPN(500) DO IK = 2. KDO 1 = 1. N+K-1 IF(IK.EQ.2) THEN IF(T(D.EQ.U) THEN TEMPNIK = 1 ELSE IF((T(D.LE.U),AND,(U.LT,T(I+1))) THEN TEMPNIK = 1 ELSE TEMPNIK = 0 ENDIF IF(T(I+1).EQ.U) THEN TEMPNIK = 1 ELSE IF(CT0+1).LEU).AND.(U.LT.T(1+2))) THEN TEMPNIK = 1 ELSE TEMPNIIK = 0 ENDE ELSE: TEMPNIK = CNIK(I) TEMPNIIK = CNIK(1+1) ENDIF IF((T(I+IK-1) - T(I)).EQ.0) THEN TEMP1 = 0ELSE: TEMP1 = ((U-T(I))*TEMPNIK)/(T(I*IK-I)-T(I))ENDIF IF((T(I+IK) - T(I+1)).EQ.0) THEN TEMP2 = 0ELSE: TEMP2 = ((T(I*IK)-U)*TEMPNIIK)/(T(I*IK)-T(I*I))ENDE TEMPN(D = TEMP1 + TEMP2 ENDDO DO I = 1. L CNIK(I) = TEMPN(I) ENDDO ENDDO RETURN END C PROGRAM END

READ(2.*) FILETOP

1 - 1

C PROGRAM EQEXCLUEE C * EQEXCLUDE.f C * USE THE PROGRAM AFTER NURB.f C C * MAIN FUNCTION: THIS PROGRAM EXCLUDE THE EQUAL X VALUE C * THE PROGRAM READS NURB CREATED AIRFOIL DATA AND EXCLUDE C * EQUAL X VALUES INTEGER I. L REAL PT(80000,2) OPEN(UNIT=2, FILE='naca64a204f.dat', STATUS='01.D') OPEN(UNIT=4, FILE='naca64a204ffs.dat', STATUS='UNKNOWN') CALL COORDINATE(L.PT) DO 200 I-1, L-1 IF (PT(L1).EQ.PT(I+1.1)) THEN GO TO 200 ELSE: WRITE(4, 100) PT(L1), PT(L2) 100 FORMAT(1X,F8.5,2X,F9.6) ENDE 200 CONTINUE CLOSE(4, STATUS='KEEP') STOP END C * SUBROUTINE COORDINATE * THIS ROUTINE READS COORDINATES C-----SUBROUTINE COORDINATE(LPT) INTEGER L REAL PT(80000,2) 10 READ(2,*,END=15) PT(L,1), PT(L,2) L = L + 1GO TO 10 15 RETURN END C-----

***** PROGRAM EQUALIZATION . EQUALIZATION.f C ••••••••••••••••••••••••••••••••• C * USE THE PROGRAM AFTER EQEXCLUDE.f C * MAIN FUNCTION: SELECT EQUAL X VALUES OF UPPER AND LOWER NURB C * CREATED AIRFOIL DATA, THIS PROGRAM SAVES RESULTING * COMMON X VALUES INTO THEIR OWN NEWLY CREATED FILES MAIN FUNCTION INTEGER LULLI122 REAL PT(80000,2),PT1(80000,2),PT2(80000,2) OPEN(UNIT=2, FILE='raca64a204ufs.dat', STATUS='OLD') OPEN(UNIT=4, FILE='raca64a204fs.dat', STATUS='OLD') OPEN(UNIT=6, FILE='raca64a204fsc.dat', STATUS='NEW') OPEN(UNIT=8, FILE='naca64a204ufsc.dat', STATUS='NEW') CALL COORDINATE(Z.L.PT) 1.1-1 DO I=1, L1 PT1(L1)=PT(L1) PT1(L2)=PT(L2) ENDDO CALL COORDINATE(Z.L.PT) L2-L DO I=1, L2 PT20.1)=PT(L1) PT2(L2)=PT(L2) ENDDO DO 60 I=1, L1 DO 50 J=1, L2 IF (PT1(L1).EQ.PT2(L1)) THEN WRITE(6, 100) PT1(I,1), PT1(I,2) ELSE GO TO 50 ENDF 50 CONTINUE 60 CONTINUE DO 80 I=1, L2 DO 20 I=1 L1 IF (PT20.1).EQ.PT1(J.1)) THEN WRITE(6, 100) PT2(I,1), PT2(I,2) ELSE GO TO 70 ENDIF 20 CONTINUE 80 CONTINUE 100 FORMAT(1X,F8.5,2X,F9.6) STOP END * SUBROUTINE COORDINATE * THIS ROUTINE READS COORDINATES SUBROUTINE COORDINATE(ZLJPT) INTEGER Z. L REAL PT(80000,2) 1 - 1 10 READ(Z.*, END=15) PT(L,1), PT(L,2) L = L + 1GO TO 10 15 RETURN

END C PROGRAM END C+----C + PROGRAM : DISCRETIZATION OF MORPHING AIRFOILS C DISCRETEFOIL.f C + C* THE PROCRAM GENERATES DISCRETE 'MORPHING' AIRFORS MAIN FUNCTION INTEGER NUM, N. I. I. K. REAL HIGHPT(300,2),LOWPT(300,2),UNIT(300),NEWPT(300,2) CHARACTER*(25) HIGHNAME, LOWNAME, DISCRETFOIL PRINT*, 'HIGH THICKNESS/CHORD AIRFOIL NAME(FULL FORMAT)?' PRINT*, 'CASE SENSITIVE. INPUT EX) NACA6ia204uprev.dat' READ+. HIGHNAME PRINT*, 'LOW THICKNESS/CHORD AIRFOIL N/ME/FULL FORMAT/?' PRINT*, 'CASE SENSITIVE, INPUT EX) NACA64a204uprev.dat' READ+. LOWNAME OPEN(UNIT=20, FILE=HIGHNAME.STATUS='OLE') OPEN(UNIT=30, FILE=LOWNAME,STATUS='OLD') READ(20.*) (HIGHPT(L1).HIGHPT(L2).I=1.121) READ(30.*) (LOWPT(L1),LOWPT(L2),I=1,121) PRINT*, 'HOW MANY EQAL DISTANCE FOR DISCRETE AIRFOILS?' READ*, N NUM-N-1 PRINT 90, NUM 90 FORMAT('NUMBER OF DISCRETE MORPHING AIRFOILS:',1X,I3) DO I-1.121 NEWPT(L2)=LOWPT(L2) ENDDO DO 1-LNUM PRINT*. PRINT*, 'NAMES OF DISCRETE AIRFOIL?(N NUMBERS, FULL FORM)' PRINT*, 'CASE SENSITIVE, INPUT EX) stagel.dst' PRINT 100. I 100 FORMAT(1X,13.3X) READ* DISCRETFOR OPEN(UNIT=L FILE=DISCRETFOIL, STATUS='NEW') DO J=1.121 UNIT(J)=(HIGHPT(J,2)-LOWPT(J,2))/N NEWPT(J.2)=NEWPT(J.2)+UNIT(J) WRITE(L150) LOWPT(L1), NEWPT(J,2) 150 FORMAT(1X,F12.5,2X,F12.5) ENDDO ENDDO PRINT*, 'DISCRETIZATION DONE' END C PROGRAM END

C.

C

C * PROGRAM LINEAR STRENGTH VORTEX PANEL METHOD LVSP.f C * REFERENCE: Joseph Katz, Allen Plotkin, "Low-Speed Aerodynamics 2nd Ed.", Cambridge REAL EP(400.2), EPT(400.2), PT1(400.2), PT2(400.2) REAL CO(400.2). A(400.400), B(400,400), G(400) REAL TH(400), DL(400) OPEN(8.FILE='CPLV.dat') OPEN(9,FILE='milevrev.dat') WRITE(6.*) 'ENTER NUMBER OF PANELS' READ(5.*) M N-M-1 WRITE(6.*) 'ENTER ANGLE OF ATTACK IN DEGREES' READ(5.*) ALPHA AL=ALPHA/57.2958 DO I=1.M=1 READ(9,*) EP(L1), EP(L2) END DO DO I-LM PT1(LD=EP(LD) PT20.1)=EP(1+1.1) PT1(L2)=EP(L2) PT2(L2)=EP(I+1,2) END DO DO I-1.M DZ=PT2(L2)-PT1(L2) DX-PT2(1)-PT1(1) TH(I)=ATAN2(DZ,DX) END DO DO I-LM CO(L1)=(PT2(L1)-PT1(L1))/2+PT1(L1) CO(L2)=(PT2(L2)-PT1(L2))/2+PT1(L2) END DO DO I-LM DO J=1,M XT=CO(L1)-PT1(L1) ZT=CO(L2)-PT1(L2) X2T=PT2(L1)-PT1(L1) Z2T=PT2(L2)-PT1(L2) X=XT+COS(TH(I))+ZT+SIN(TH(I)) Z=-XT+SIN(TH(I))+ZT+COS(TH(I)) X2=X2T+COS(TH(J))+Z2T+SIN(TH(J)) Z2=0 IF(LEQ.1) THEN DL(D=X2 END IF R1=SQRT(X++2+Z++2) R2=SQRT((X-X2)++2+Z++2) THI=ATAN2(Z,X) TH2-ATAN2(Z,X-X2) IF(LEQ.D) THEN U1L=-0.5+(X-X2)/(X2) U2L=0.5*(X)/(X2) W1L=-0.15916 W2L=0.15916

ELSE:

UIL=-(Z=LOG(R2/R1)+X+(TH2-TH1)- * X2+(TH2-TH1))/6.23819+X2) UZ_=(Z+LOG(R2/R1)-X+(TH2-TH1))/6.23819+X2) WIL=-(X2-Z+(TH2-TH1))-X+LOG(R1/R2)/(6.28819-X2) WZ_=(X2-Z+(TH2-TH1))-X+LOG(R1/R2)/(6.28819-X2) END IF U1=UIL+COS(-TH(I))+WIL+SIN(-TH(I)) U2=UZ_+COS(-TH(I))+WIL+SIN(-TH(I)) W1=-UIL+SIN(-TH(I))+WIL+COS(-TH(I)) W1=-UIL+SIN(-TH(I))+W2+COS(-TH(I)) W2=-UZ_+SIN(-TH(I))+W1+COS(-TH(I)) B(L)=-U1+SIN(TH(I))+W1+COS(-TH(I)) B(L)=-U1+SIN(TH(I))+W1+COS(-TH(I)) B(L)=-U1+SIN(TH(I))+W1+COS(-TH(I)) B(L)=-U1+SIN(TH(I))+W1+COS(-TH(I)) B(L)=-U1+SIN(TH(I))+W1+COS(-TH(I))) B(L)=U1+COS(-STH(I))+W1+COS(-TH(I))+B(L) A(LN)=-U1+SIN(TH(I))+W1+COS(-TH(I))+B(L) A(LN)=-U1+SIN(TH(I))+W1+COS(-TH(I))+B(L) B(LN)=U2+COS(-TH(I))+W2+S(N(-TH(I))+B(L))+B(L) B(LN)=U2+COS(-TH(I))+W2+S(N(-TH(I))+B(L))+B(L) B(LN)=U2+COS(-TH(I))+W2+S(N(-TH(I))+B(L))+B(L))+B(L))+B(L) B(LN)=U2+COS(-TH(I))+W2+S(N(-TH(I))+B(L	REAL A(400,400), TEMP(400,400), G(400) DO 1=1N-1 G(1)=0 END DO DO 1=1N-1 5 IF(ARS(A(ILD)LT, 0.0000001) GO TO 9 P=A(ILD) DO 1=1N A(ILD=A(ILJ)/P END DO DO L=1N A(ILD=A(ILL)-P2*A(ILL) END DO END DO END DO DO 1=N-11.1=1 G(1)=A(ILJ)-G(J)=P2*A(ILL) END DO END DO
A(LN-1)=COR(AL)=CIN(TH(D)=CIN(AL)=COR(TH(D)	9 (F(LNE.N-1) THEN TYO, I-1 N
Auger (Providele State (Ind) - State Post (Ind)	TEMP(LD=A(LD)
END DO	A(1,D=A(1+1,D) A(1+1,D=TEMP(I,J) END DO
A(N,1)=1 A(N,N)=1	GO TO 5 ELSE - GO TO 10
IF(M.EO.10) THEN DO 1=1.11 WITTE(610) A(1.1) A(1.2) A(1.2) A(1.4) A(1.5) A(1.6).	END IF 10 WRITE/6+) 'NO SOLUTION'
* A0.7),A0.8),A0.9),A0.10),A0.11) END DO END DF	STOP END
N-V-1	CC PROCRAM END
CALL MATRX(A.N.G)	C PROJECTI END
200 CONTINUE	
N-M-1 (T-0	C ************************************
DO 1+1.M VEL=0 DO 1+1.N VEL=VEL*B(J)*G(J) END DO V=VEL=COS(AL)*COS(TH(D)*SIN(AL)*SIN(TH(D) CL=CL+V*DL(D CP=1-V**2 WRITE(6,*) ' ' WRITE(6,*) ' '	C * THIS PROGRAM CALCULATE CENTER OF AIR PRESSURE C * BASED ON Eq. [3.7] C * C * C * C * INTEGER LILLIMIN REAL PT(3002). CM(300) CHARACTER*(25) FILENAME CHARACTER*(25) FILENAME CHARACTER*(25) FILENAME CHARACTER*(25) FILENAME PRINT*.'PRESSURE DATA FILE TO READ?' PRINT*.'CASE SENSITIVE, INPUT EX) CPmiley.dat' READ*.FILENAME PRINT*.'NAME OF CMtot DATA FILE TO MAKE?'
C	PRINT*, 'CASE SENSITIVE. INPUT EX) CMmiley.dat' READ*, FILENAMEMAKE

```
OPEN(UNIT=4.FILE=FILENAME.STATUS='0LD')
OPEN(UNIT=6.FILE=FILENAMEMAKE.STATUS='%EW')
       CALL COORDINATE(L.PT)
       L = L - 1
CALL MINIMUM(PT.L.LMIN)
       DO 30 I=1,L
         CM(D = 0
DO 20 I=1.L
          DO 20 1-1L

FE (PT(L)).EQ.PT(J,1)) THEN

GOTO 20

ELSE IF (PT(L)).GT.PT(L1)) THEN

IF (PT(L).GT.OTHEN

CMID-CM(D-(PT(J,1)-PT(J,1))*PT(J,2)

HS 2012
              ELSE
           ELSE :

CM(0)-CM(0)-(PT(J,1)-PT(J,1))+PT(J,2)

END0!

ELSE IF (PT(L),LT,PT(L))) THEN

IF (PT(L2),GE, 0) THEN

CM(0)-CM(0)-(PT(J,1)-PT(J,1))+PT(J,2)

IF SEP :
              ELSE
              CM(D=CM(D-(PT(I,1)-PT(J,1))*PT(J,2)
              ENDIF
           ENDE
    20 CONTINUE
   WRITE(6.25) PT(1.1), CM(I)
25 FORMAT(1X,F10.5,2X,F10.5)
30 CONTINUE
       PRINT*, 'DONE'
       END
 C
C * SUBROUTINE COORDINATE
C
C-----
      SUBROUTINE COORDINATE(L,PT)
       INTEGER L
       REAL PT(300,2)
       1. - 1
    10 READ(4+END=15) PT(L,1), PT(L,2)
       L = L + 1
GO TO 10
    15 RETURN
       END
 C-----
 C
C * SUBROUTINE MINIMUM
C
C-
       SUBROUTINE MINIMUM(PT,L,LMIN)
       REAL PT(300.2)
INTEGER I. L. LMIN
REAL MIN
       MIN = PT(1,1)
       DO 1:2. L
          IF (PT(L1).LT.MIN) THEN
             MIN = PT(I,1)
LMIN = 1
          END IF
       ENDDO
       RETURN
       END
C-----
C PROGRAM END
```

						-0.005272	0.005501	-0.002206	0.0005522	mod12 dist	-0.007282	-0.007576	-0.005517	0.000272	and W dist	-0.002070	-0.010756	-0.004065	0.011/00	and C dist
	a_0	a_1	<i>D</i> ₁	С	Foil Name	-0.003591	-0.009534	0.000916	0.006696	e174.dat	-0.004925	-0.009314	-0.001312	0.009406	usa46dat	-0.006881	0.003166	0.011058	0.011502	m16.dat
	0.000.000	0.000.000	0.000100	0.000.000	1	-0.003758	-0.009398	-0.000087	0.0069999	e387.cat	-0.004813	-0.009458	-0.000427	0.009467	goe602m.dat	-0.012085	-0.011447	0.001152	0.011505	usa34.dat
	-0.000422	-0.000420	-0.000186	0.000459	goe184.dat	-0.006616	-0.006488	0.001965	0.006779	goe58i.dut	-0.007175	-0.009443	0.000740	0.009472	goof\$2 dat					
	0.00.4522	0.001062	0.000254	0.001122	alonneortin? dot	-0.003941	-0.005280	-0.004293	0.006805	ag47ct02r.dat	-0.005853	-0.009129	0.002610	0.009495	s4062.dat					
	-0.007161	-0.001461	-0.000700	0.001619	raf15.dat	-0.008035	0.005351	0.004245	0.006830	goetxidat	-0.006299	-0.009406	0.001312	0.0094297	s2091 dat	0.001164	0.000007	0.07001.0	0.0711707	-542 day
	-0.002371	-0.001119	-0.001234	0.001666	raf6.dat	-0.006248	-0.0002219	-0.002950	0.006858	coleocia dat	-0.005682	-0.002862	0.008777	0.000589	mon122 shat	-0.019557	-0.014252	-0.020113	0.071547	6x77u/270 dot
	0.005283	0.001356 -	-0.001082	0.001735	coanda3 dut	-0.002337	-0.002593	-0.005421	0.006925	sc20472.dut	-0.004143	-0.006722	0.006909	0.009639	ag27.cat	0.001724	-0.009450	-0.070974	0.071601	e540.dst
	-0.006933	-0.002029	0.000620	0.002121	roe571.dat	-0.003937	-0.006868	-0.001062	0.006950	sd6080.dut	-0.004638	-0.009368	-0.002484	0.009692	sel7032 duit	-0.011595	-0.022513	-0.068440	0.072048	rafi90.dat
	0.004572	0.001670 -	-0.001450	0.002211	n11.dat	-0.004959	0.000453	0.007011	0.007025	goe491 dat	-0.004352	-0.006736	-0.006974	0.009696	ag45ct02r.dat	-0.003176	-0.013759	-0.070990	0.072311	e477.dat
	-0.002140	-0.001640	-0.001222	0.002228	goen11.stat	-0.003539	-0.004380	-0.005525	0.007050	e598.cat	-0.006520	-0.009550	-0.001146	0.009728	sel7031.dut	-0.002351	-0.022037	-0.069035	0.072467	naca633218.dat
	-0.001658	-0.001324	-0.001999	0.002398	ane05c dist	-0.009539	-0.006871	-0.001812	0.007106	goeS(R.dat	0.006558	0.003129	-0.009212	0.009729	rhodes#32.dat	-0.001684	-0.013527	-0.071665	0.072531	e520.dat
	-0.001880	-0.001638	-0.001932	0.002533	goe09k dist	-0.005020	-0.005619	-0.006061	0.007186	more set and	-0.006800	-0.009020	-0.005506	0.000770	anether dut	-0.002220	-0.021152	-0.072450	0.072576	-229 dot
-000000 0000000 0000000 0000	-0.002378	-0.002369	0.001032	0.002584	goel13.dat	-0.006949	0.0000./2	-0.007228	0.0072228	and dat	-0.002484	-0.007145	0.006722	0.009817	c.6220 dot	-0.011522	-0.001232	0.073775	0.072285	rof10 dot
- 0.0000 - 0	-0.008050	0.001254	0.002404	0.002711	m17.dat	-0.004679	-0.007236	-0.001477	0.007385	s9037dat	-0.005109	-0.003029	0.009344	0.009823	goe277.dat	-0.009076	-0.021946	-0.070864	0.074184	1s421mod.dat
$ \begin{array}{c} 0.00256 & -0.0$	-0.006891	-0.002754	-0.000813	0.002872	one562 dist	0.004220	0.001503	0.007260	0.007414	coanda) dat	-0.004965	-0.009599	-0.002171	0.009841	e392.dat	-0.011185	-0.021294	-0.071296	0.074408	fx77w258.dat
$ \begin{array}{c} - 0.0000 & - 0.0000 & 0.0000 & - 0.00000 & - 0.0000 & - 0.0000 & - 0.0000 & - 0.0000 & - 0.0000 & - 0.$	-0.003323	-0.002354	-0.001644	0.002880	ag11.dat	-0.004491	-0.005249	-0.005349	0.007494	uag8814320.dat	-0.004201	-0.000918	0.009829	0.009872	goe377.dat	-0.007981	-0.022078	-0.071122	0.074470	1s421.dat
$ \begin{array}{c} 0.00000 & 0.00200 & 0.00200 & 0.00200 & 0.00200 & 0.00000 $	0.0102008	0.000027	0.0000000	0.002054	102.46d	-0.004344	-0.009514	-0.003676	0.007565	e176.dat	-0.004658	-0.006877	-0.007132	0.009908	s3024dat	-0.014849	-0.016500	-0.073252	0.075087	can21c dat
	0.004801	0.002049	-0.002358	0.003124	deal138 dut	-0.003942	-0.006443	-0.004034	0.007602	s3025dat	-0.007725	-0.009896	-0.000499	0.009909	goe615.dat	-0.011152	-0.032770	-0.067601	0.075125	sc20518.dsit
$ \begin{array}{c} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	-0.007705	-0.002788	-0.001484	0.003158	goe572 dat	-0.003953	0.0002385	0.0002265	0.007630	tab least	-0.007579	-0.009190	-0.003728	0.009917	one SLdut	-0.012238	-0.020070	-0.072584	0.025208	us1000mot.dat
- 0.00000 + 0.	0.002422	-0.000433	-0.003325	0.003353	fg3.dat	0.000245	-0.007420	-0.001990	0.007654	hog258 dot	-0.000100	0.002/24	0.000265	0.000075	shop dat	-0.001810	-0.020525	-0.072052	0.075780	macards/2218.dat
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-0.005216	-0.001859	0.002870	0.003419	moe316.dat	-0.004150	-0.007455	0.001704	0.007669	ng12 dot	-0.004001	-0.006441	0.007711	0.0100/7	mon 102 abut	-0.015255	-0.020607	-0.072085	0.075920	mean Suisting
$ \begin{array}{c} -0.00757 \\ -0.$	0.002560	0.000198	-0.003605	0.003610	fø1.dat	-0.003121	-0.000996	0.007612	0.007677	goe54dat	-0.003853	0.000650	0.010129	0.010150	goe280 dat	-0.001079	-0.025822	-0.071959	0.076452	naca634421.dat
$ \begin{array}{c} -0.00076 \\ -0.$	-0.007101	-0.003303	-0.001557	0.003651	usnos@dat	-0.001667	-0.007138	-0.002830	0.007679	psu94097.dat	-0.009776	-0.009358	-0.003933	0.010151	goe412.dat	-0.021721	0.000000	-0.076687	0.076687	dbin525.dat
$ \begin{array}{c} -0.00256 + 0.00257 + 0.00158 + 0.00156 + 0.00256 + 0.000256 + 0.0025$	-0.004957	-0.003052	-0.002012	0.003656	goe385.dat	-0.006942	-0.007612	-0.001116	0.007694	me39 dat	-0.008399	-0.008977	-0.004827	0.010192	goed1£dat	-0.001045	-0.024196	-0.073032	0.076936	naca644421.dat
$ \begin{array}{c} -0.00758 - 0.00751 & 0.00750 & 0.00751$	-0.003412	0.0000001	-0.001500	0.003701	goel3Ldur	-0.005706	-0.004935	-0.005910	0.007699	goel likidid	0.008555	0.003568	-0.009553	0.010198	n22.dat	0.015751	-0.024568	-0.073145	0.077161	ua79sfm.dat
$ \begin{array}{c} -00076 - 00076 + 00076$	-0.010218	-0.002150	0.002262	0.002877	mon511 dat	0.001926	0.001630	0.007544	0.007718	isa961.dat	-0.003798	-0.009435	-0.003929	0.010220	ag25.dat	-0.008180	-0.014903	-0.076228	0.077671	s1014.dat
$ \begin{array}{c} -0.00285 \\ -0.00275 \\ -0.$	-0.003850	-0.003704	-0.001190	0.003891	acuilasm dat	0.004171	0.001784	0.007631	0.007837	coanda" dat	-0.002027	0.001395	0.010136	0.010232	goe180.dut	-0.003095	-0.013507	-0.076696	0.077867	naca695218.dat
$ \begin{array}{c} -000293 + 0.00237 \\ -000238 & 000126 \\ -000128 & 000126 \\ -000238 & 000126 \\ -000128 & 000126 \\ -000128 & 000128 \\ -000238 & 000128 \\ -000238 & 000128 \\ -000238 & 000128 \\ -000238 & 000128 \\ -000238 & 000128 \\ -000238 & 000128 \\ -000238 & 000128 \\ -000238 & 000028 \\ -000028 & 0000008 \\ -000028 & 000008 \\ -000028 & 000008 \\ -000028 & 000008 \\ -00$	-0.006289	-0.002226	0.003199	0.003898	m14.dat	0.004120	0.0072222	0.002184	0.007863	entres (statig)	-0.0053209	-0.003654	0.000617	0.010228	poetssing pa27.det	-0.013787	-0.017566	-0.077615	0.079070	normenter 1421 dat
$ \begin{array}{c} -0.00769 \\ -0.00789 \\ -0.00780 \\ -0.$	-0.002926	-0.002518	-0.003026	0.003937	goe10k dist	-0.003949	-0.006250	0.004851	0.007912	ag14 dat	-0.006475	-0.007525	-0.007044	0.010307	ane-61 dut	-0.000501	0.010230	0.079378	0.080034	e226 dat
$ \begin{array}{c} -0.00271 \\ -0.00272 \\ -0.00273 \\ -0.00275 \\ -0.$	-0.008366	-0.003908	0.001062	0.004049	usa26dat	-0.011435	-0.007605	-0.002305	0.007947	goe505 dat	0.000394	-0.007738	-0.006814	0.010310	ho308.dat	-0.003100	-0.014413	-0.078969	0.080274	e476.dat
$ \begin{array}{c} -0.00751 \\ -0.00757 \\ -0.00758 \\ -0.$	-0.006574	-0.002592	0.003236	0.004146	moel 67 stat	-0.008390	-0.007133	-0.003547	0.007965	goe67).dat	-0.004080	0.002634	0.009970	0.010312	goe590 shat	-0.004594	0.004624	0.081391	0.081522	e377.dat
$ \begin{array}{c} -0.00371 \\ -0.00372 \\ -0.00373 \\ -0.00375 \\ -0.$	-0.005445	-0.002241	0.003768	0.004384	goe57Ldat	-0.013336	-0.008041	-0.000297	0.008046	goe51'Ldat	-0.003748	-0.003804	-0.009589	0.010316	sc20503.dut	-0.009714	-0.016407	-0.080254	0.081914	s1016.dat
$ \begin{array}{c} -0.00037 \\ -0.000787 \\$	-0.0022031	0.004202	-0.0007222	0.001454	atth0.dat	-0.005993	-0.002549	-0.007615	0.008063	m10.dat	-0.004575	-0.001871	0.010160	0.010331	acce122.dat	-0.018359	-0.026060	-0.078761	0.082960	naca/2424.dat
$ \begin{array}{c} -0.07713 \\ -0.07758 \\ -0.07756 \\ -0.07750 \\ -0.$	-0.004947	-0.003651	0.002563	0.004460	ni i frestate na 09. dat	-0.004113	-0.005947	-0.005496	0.008098	ag46ct02r.dat	-0.006954	-0.006314	-0.008226	0.010370	goe755.diit	-0.009955	-0.018627	-0.080872	0.082990	naca/23021.dat
$ \begin{array}{c} -0.0728 \\ -0.0728 $	-0.007113	-0.000602	0.004479	0.004519	goe252.dat	-0.012829	-0.003418	0.007343	0.0080869	goe74Ldat	0.001395	0.001484	0.010286	0.010286	isa962.dat	-0.013216	-0.005791	-0.082861	0.083063	naca16018,dat
$ \begin{array}{c} -0.00345 \\ -0.00345 \\ -0.00347 \\ -0.$	-0.007383	-0.003565	0.002794	0.004530	goe321 dat	-0.008097	-0.002110	0.000022	0.009110	17700 Aut	-0.004046	-0.000007	-0.010/20	0.010440	satisfier m12 dat	-0.011625	-0.019762	-0.0822002	0.084405	h/Operation
$ \begin{array}{c} -0.00345 - 0.00371 & 0.00430 & 0.01430 & 0.01150 & 0.02371 & 0.010490 & 0.730 & 0.01039 & 0.730 & 0.01039 & 0.730 & 0.01039 & 0.730 & 0.01039 & 0.730 & 0.01039 & 0.730 & 0.01039 & 0.730 & 0.01039 & 0.00310 & 0.00039 & 0.00310 & $	-0.010846	-0.003869	0.002385	0.004545	arad10.dut;	0.006107	0.002877	-0.007632	0.008156	n9.dat	-0.010300	-0.005848	-0.008651	0.010442	usa/27w2 Ast	-0.017325	-0.022191	-0.081842	0.084797	fx8977.1.dut
$ \begin{array}{c} -0.007316 - 0.00730 \\ -0.00732 - 0.00731 \\ -0.00732 - 0.00731 \\ -0.00732 - 0.00731 \\ -0.00732 - 0.00731 \\ -0.00732 - 0.00731 \\ -0.00732 - 0.00731 \\ -0.00732 - 0.00731 \\ -0.00732 - 0.00731 \\ -0.00732 - 0.00732 \\ -0.00732 \\ -0.00732 - 0.00732 \\ -0.00732 $	-0.005445	-0.003473	0.003077	0.004640	ag10.dat	-0.004848	-0.006745	-0.004589	0.008158	ag04.dat	-0.004974	-0.006500	-0.008207	0.010469	e178.cat	-0.003517	0.010770	0.084784	0.085466	e377m.dat
$ \begin{array}{c} -0.07855 \\ -0.07758 \\ -0.$	-0.003108	-0.0022990	0.002491	0.004704	goe41/udat	-0.004012	-0.008165	0.001516	0.008304	ag26.dat	-0.011427	-0.010388	-0.001303	0.010470	goe401.dat	-0.002537	-0.025889	-0.082193	0.086174	naca634221.dat
$ \begin{array}{c} -0.00732 \\ -0.00732 \\ -0.00732 \\ -0.00733 \\ -0.00753 \\ -0.$	-0.006825	0.000719	0.004670	0.004725	ece746.dug	-0.004756	-0.008350	-0.000061	0.008351	s4061.dat	-0.043184	0.010281	0.002224	0.010519	offster, dut	-0.004062	-0.015259	-0.084940	0.086299	th/2580/Labor
$ \begin{array}{c} -0.00738 \\ -0.00138 \\ -0.00138 \\ -0.00139 \\ -0.00138 \\ -0.00139 \\ -0.$	-0.003432	-0.002652	-0.004115	0.004901	aceOG: dist	-0.004304	-0.008311	-0.001036	0.008375	ag12.dat	-0.003548	-0.001014	0.010493	0.010542	ace/278.dut	-0.008378	0.003555	0.085144	0.086517	goedStatut
$ \begin{array}{c} 0.001445 & 0.000257 & 0.001844 & 0.001851 & 0.001852 & 0.001850 & 0.0$	-0.007268	0.001073	0.004802	0.004920	goe308.dat	-0.004134	-0.006249	-0.005283	0.008395	ag45cet02r.dat	-0.003610	-0.009040	-0.005461	0.010561	special data	-0.002500	-0.024260	-0.083279	0.086740	naca614221.dat
$ \begin{array}{c} -0.02168 \\ -0.002376 \\ -0.002376 \\ -0.00237 \\ -0.00372 \\ -0.00372 \\ -0.00372 \\ -0.00372 \\ -0.00372 \\ -0.00372 \\ -0.00372 \\ -0.00037 \\ -$	0.001445	0.000257	0.004944	0.004951	eiffel428.dut	-0.002889	-0.007812	-0.002243	0.008450	mb28 dot	-0.006096	-0.010409	-0.001969	0.010594	gool 15 dat	-0.00/254	-0.012302	-0.080501	0.087271	nocoffi-018 dat
$-0.00739 - 0.007374 0.00122 \\ -0.00739 - 0.007392 0.001375 \\ -0.007392 0.007392 0.001374 \\ -0.007392 0.007392 0.007392 \\ -0.007392 0.007392 0.00739 \\ -0.007392 0.007392 0.00739 \\ -0.00739 0.00739 \\ -0$	-0.021648	0.001879	-0.004755	0.005112	usa35a.dat	0.004154	0.000938	0.008457	0.008509	stevr24dat	-0.005845	-0.001896	0.010474	0.010644	ace/982 stat	-0.017916	-0.024041	-0.0851.48	0.088477	naca0021.dat
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.006369	-0.002974	0.004223	0.005165	goe318.dat	-0.005215	0.004928	-0.006988	0.008550	n6h10.dat	-0.005039	-0.005378	0.009248	0.010698	goe180 dut	-0.017360	-0.037317	-0.081194	0.089359	ab6Gw257.dat
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.007148	-0.003878	0.002509	0.005230	goe2%idat	-0.005511	-0.005924	0.006242	0.008606	goe477.dat	0.000579	-0.008628	-0.006367	0.010723	ho359.dat	-0.014165	-0.021857	-0.086901	0.089608	goe461.dat
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.011540	0.002517	0.004165	0.005459	m24 dat	-0.002536	-0.000191	0.008612	0.008614	me-29Lithit	-0.004953	-0.007655	-0.007552	0.010753	e193.dat	-0.001833	-0.020887	-0.087450	0.089910	naca654221.dat
$ \begin{array}{c} -0.00725 \\ -0.001725 \\ -0.00775 \\ -0.00725 \\ -0.00775 \\ -0$	-0.004000	-0.002122	0.005048	0.005480	mealling at	0.007853	0.002440	-0.008265	0.009618	daytoewright6.dat	0.008029	0.003854	-0.010061	0.010774	n10.dat	-0.014780	-0.028256	-0.086317	0.090824	raf89.dat
-0.007688 + 0.001275 - 0.00279 0 - 0.005608 + -0.001275 - 0.006408 + -0.001288 + 0.006115 + 0.006175 + 0.006116 + -0.001219 - 0.002218 + 0.002118 + -0.001219 - 0.002218 + 0.002118 + -0.001219 - 0.002218 + 0.002118 + -0.001219 - 0.002218 + 0.002118 + -0.001219 - 0.002218 + 0.002118 + -0.001219 - 0.002218 + 0.002118 + -0.001219 - 0.002218 + 0.002118 + -0.002118 + -0.002219 + 0.002218 + 0.002118 + -0.002219 + 0.002218 + 0.002118 + -0.002219 + 0.002218 + 0.002118 + -0.002219 + 0.002218 + 0.002118 + -0.002219 + 0.002218 + 0.002118 + -0.002219 + 0.002218 + 0.002118 + -0.002219 + 0.002218 + 0.002118 + -0.002219 + 0.002218 + 0.002118 + -0.002118 + -0.002219 + 0.002218 + 0.002118 + -0.002118 + -0.002219 + 0.002219 + 0.002218 + 0.002118 + -0.002219 + 0.002218 + 0.002118 + -0.002219 + 0.002219 + 0.002218 + 0.002118 + -0.002219 + 0.002218 + 0.002118 + -0.002219 + 0.002218 + 0.002118 + -0.002219 + 0.002118 + -0.002219 + 0.002219 + 0.002118 + -0.002219 + 0.002118 + -0.002118 + -0.002219 + 0.002118 + -0.002118 + -0.002118 + -0.002118 + -0.002129 + 0.002118 + -0.002129 + 0.002118 + -0.002129 + 0.002118 + -0.002129 + 0.002118 + -0.002129 + 0.002118 + -0.002129 + 0.00212 + 0.002128 + 0.002128 + 0.002118 + -0.002129 + 0.002118 + -0.002129 + 0.002128 + 0.00228 + 0.002128 + 0.00228 + 0.00228 + 0.00228 + 0.00228 + 0.00228 + 0.00228 + 0.0022	-0.004725	-0.004812	-0.002658	0.005498	goe711 dat	-0.004434	0.002782	-0.000799	0.009645	sp17.dst shodoor20.dot	-0.005467	-0.009298	-0.000238	0.010848	goests dat	-0.003243	-0.016002	-0.091521	0.002002	nacat/64221.dat
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-0.007688	-0.004735	0.002800	0.005501	goe321 dat	-0.003989	-0.006159	0.006115	0.009679	ag19 dat	-0.007799	-0.002502	-0.009579	0.010879	med35 dat	-0.021119	-0.012210	0.096890	0.097659	messi dat
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-0.023679	0.003624	-0.004279	0.005608	se/21006.dut	-0.004281	-0.004849	-0.007205	0.008685	ht22 dat	-0.006167	-0.005317	0.009500	0.010887	usa22.dat	-0.022136	-0.022998	-0.097628	0.100301	fx77w343.dat
$ \begin{array}{c} -0.008226 \\ -0.008226 \\ -0.008226 \\ -0.00826 \\ -0.00827 \\ -0.00752 \\ -0.00856 \\ -0.00857 \\ -0.00757 \\ -0.00757 \\ -0.00757 \\ -0.00757 \\ -0.00757 \\ -0.00757 \\ -0.00757 \\ -0.00757 \\ -0.00857 \\ -0.00757 \\ -0.00857 \\ -0.00757 \\ -0.00857 \\ -0.00757 \\ -0.00857 \\ -0.00757 \\ -0.00857 \\ -0.00857 \\ -0.00757 \\ -0.00857 \\ -0.00857 \\ -0.00857 \\ -0.00857 \\ -0.00857 \\ -0.00857 \\ -0.00857 \\ -0.00857 \\ -0.00857 \\ -0.00857 \\ -0.001757 \\ -0.000757 \\ -0.000077 \\ -0.00007$	-0.007099	-0.004537	0.003391	0.005664	med8kdut	-0.007775	-0.008442	0.002231	0.008731	goel tri-dat	-0.011006	-0.010774	-0.001707	0.010909	goe701 dat	-0.020472	-0.027476	-0.097318	0.101122	naca0024.dat
-0.00731 - 0.00282 - 0.001341 = -0.00282 - 0.007245 - 0.007245 - 0.007245 - 0.007245 - 0.001724 - 0.001000 - 0.001774 - 0.011001 = -0.001724 - 0.001075 - 0.001724 - 0.001075 - 0.001724 - 0.001075 - 0.001724 - 0.001075 - 0.001724 - 0.001075 - 0.001724 - 0.001075 - 0.001724 - 0.001075 - 0.001724 - 0.001075 - 0.001724 - 0.001075 - 0.001724 - 0.001075 - 0.001724 - 0.001075 - 0.001724 - 0.001075 - 0.001724 - 0.001075 - 0.001725	-0.008286	-0.004239	0.003818	0.005705	goe C22 dat	-0.007622	-0.007737	-0.004243	0.008824	wasnem.dat	-0.004208	-0.008268	-0.007131	0.010918	sel7037.dut	-0.028811	-0.039928	-0.095045	0.101967	ah93w300.dat
$ \begin{array}{c} -0.001225 \\ -0.001245 \\ -0.000255 $	-0.006457	-0.005762	0.000252	0.005767	moed71.dat	-0.009304	-0.004265	-0.007745	0.008842	goe512 dat	-0.004703	-0.010000	-0.004774	0.011081	ag16.dat	-0.004742	-0.016035	-0.101779	0.103035	n66021.dut
-0.001232 - 0.004128 - 0.004128 - 0.004128 - 0.004128 - 0.004128 - 0.001075 - 0.0040880 - 0.000887 - 0.000888 - 0.008880 - 0.000818 - 0.000719 - 0.001117 - 0.004124 - 0.007214 - 0.007220 - 0.007224 - 0.007214 - 0.007270 - 0.007212 - 0.007224 - 0.007214 - 0.007270 - 0.007214 - 0.007270 - 0.007214 - 0.007270 - 0.007214 - 0.007270 - 0.007214 - 0.007270 - 0.007214 - 0.007270 - 0.007214 - 0.007270 - 0.00727	-0.00.921	-0.005009	-0.001367	0.005850	and State	-0.004362	-0.007318	-0.005072	0.008904	s4310.dat	-0.005435	-0.011070	0.000816	0.011100	goe532.dut	-0.020307	-0.029128	-0.099612	0.103783	goe776idat
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-0.001242	-0.004126	0.004189	0.005880	fx74080/dut	0.0073541	-0.001035	0.008860	0.0098820	ma409.dat	-0.004598	-0.008189	-0.007519	0.011117	coeff() dat	-0.027683	-0.041994	-0.102261	0.110548	atektw301.dag
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.013873	0.004652	-0.003607	0.005886	eiffel385.dut	-0.001977	-0.008142	0.002062	0.009974	uco20 dot	-0.006278	-0.000253	-0.006205	0.011151	e2025.dot	-0.013210	-0.000212	-0.119652	0.121004	allen dat
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.000714	0.00350	0.004881	0.006007	naca64a204.dat	-0.006309	-0.002652	-0.009604	0.009002	fx77w121 dot	-0.007294	-0.004902	-0.010024	0.011150	ane-18 dat	-9.741990	0.021027	0.122220	0.125158	n642415abat
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.004304	0.000163	-0.006027	0.006029	fø4.dat	-0.004799	-0.008900	-0.001419	0.009012	s4110dat	-0.005330	-0.006829	-0.008885	0.011206	goe622 dat	-0.089313	0.032846	-0.131964	0.135990	ah93w480b.dat
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-0.009237	-0.002225	0.005649	0.006072	goe40%dat	0.010623	0.003100	-0.008470	0.009020	curtise?2.dat	-0.006020	-0.004242	0.010448	0.011276	me328.dut	-0.026906	-0.038754	-0.134389	0.139865	e863 dat
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.011324	-0.005794	-0.002818	0.006353	goerd Liliat	-0.003478	0.003196	-0.008490	0.009059	miles dat	0.007607	0.003629	-0.010687	0.011286	rhodesr34.dat	-0.051906	-0.000224	-0.152682	0.152682	fx79w470a.dat
-0.006191 - 0.006391 - 0.006392 = 0.006392	-0.004134	-0.004521	-0.004625	0.000360	agus dat	-0.006502	-0.000595	0.009065	0.009085	goe408.dut	-0.011909	-0.011208	-0.001553	0.011315	mue129.dat	-0.028841	-0.040167	-0.148812	0.154137	e854.dat
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.006191	-0.006301	-0.000152	0.006302	noe Hi dat	-0.004231	-0.009651	-0.006298	0.009159	raf26.dat	-0.005846	-0.006871	-0.009075	0.011383	s70f5dat	-0.003579	-0.023554	-0.154283	0.156070	oriffith30SS dat
-0.007813 -0.005744 0.002900 0.006435 goe490.dat -0.004798 -0.008477 -0.003911 0.009335 sa7036.dat -0.008512 -0.007322 -0.008826 0.011458 goe102.dat	0.002720	0.001571	0.006201	0.006397	isa960.dat	-0.011/222	-0.0000217	-0.002211	0.009204	of 1 dat	-0.006843	-0.010608	0.004246	0.011426	mh83/lat	-0.085208	0.017609	-0.250915	0.251532	1x79w660a.dat
WANTED WATTE WARKEN WINNER SHOWNE STANDARD WATTED BUSINER	-0.007813	-0.005744	0.002900	0.006435	goe490.dat	-0.004709	-0.008477	-0.003911	0.000336	sa703kdet	-0.002512	-0.007222	-0.009996	0.011.409	mel2k dat					
						00001130	0.000111	UNAAA711	0.000000	CHARLEN COLUMNS	0000012	0.001066	0/00020	0.011400	ROCTEVENER	1				

Figure Pressure Distribution trend for NURB generated NACA64a204

Figure Pressure Distribution trend for NURB generated Morphing Stage1 airfoil

Figure Pressure Distribution trend for NURB generated Morphing Stage2 airfoil

Figure Pressure Distribution trend for NURB generated Morphing Stage3 airfoil

Figure Pressure Distribution trend for NURB generated Miley-mix airfoil

Figure Miley-mix panel reconfigured by piece