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Abstract

In this article we propose a new online multiresolution ppthnning algorithm for a small unmanned air
vehicle (UAV) with limited on-board computational resoesc The proposed approach assumes that the UAV has
detailed information of the environment and the obstacldy i its vicinity. Information for far away obstacles
is also available, albeit less accurately. The proposedritiign uses the fast lifting wavelet transform (FLWT) to
get a multiresolution cell decomposition of the environmewvhose dimension is commensurate to the on-board
computational resources. A topological graph represientaf the multiresolution cell decomposition is constegtt
efficiently directly from the approximation and detail wéatecoefficients. A dynamic path planning is sequentially
executed for an optimal path by using tb& algorithm over the ensuing graph. The proposed path plgnnin
algorithm is implemented on-line on a small autopilot. Heade-in-the-loop simulation (HILS) results validate
the applicability of the algorithm on the actual system. @ansons with the standarB*-lite algorithm are also
presented.

I. INTRODUCTION

Autonomous operation of UAVs requires both trajectory des(planning) and trajectory tracking (control)
tasks to be completely automated. Given the short respamse dcales of modern aerial vehicles, these are
challenging tasks using existing route optimizers. Onrthpaeal-time path planning is particulary challenging
for small UAVs, which may not have the on-board computati@apabilities (e.g. CPU and memory) to implement
some of the sophisticated path planning algorithms prapaséehe literature. In most applications this problem is
bypassed by providing navigation way-points that have lmeenputed either off-line, or on-line by a more capable
supervising/leader agent.

In a typical mission of a UAV, various sensors (e.g., cameradars, laser scanners, satellite imagery) having
different range and resolution characteristics are enguldg collect information about the environment the vehicle
operates in. A computationally efficient path planning alipon, specifically adopted for on-line implementation,
should therefore choose the expedient information fromttekse sensors, and use the on-board computational
resources to design the part of the path (spatial and tefypbed needs it most. In a nutshell, a computationally
efficient algorithm suitable foon-line implementation should be characterized by a combinatioshofrt term
tactics (reaction to unforeseen threats) with long-tematagy (planning towards the ultimate goal).

Several multiresolution or hierarchical path planning dlyans have been proposed in the literature to alleviate
the computational burden associated with path planning ave@mplex, unstructured, or partially known environ-
ment [1]-[5]. Quadtree decompositions have been used ta getompaosition of the environment for path planning
purposes [6]-[9]. One drawback of quadtree-based decdtigpisis that a finer resolution is used close to the
boundaries of all obstacles, regardless of their distarare the agent. This tends to waste computational resources.

Recently, Tsiotras and Bakolas [10] proposed an efficienahtbical path planning algorithm for autonomous
agents navigating in a partially known environmeéft using an adaptive, discrete, cell-based approximation of
W. The innovation of their approach hinges on the use of distawels of fidelity (resolution) odV at different
distances from the agent’s current position. A high resmtutepresentation oV is used close to the current
position of the agent (leading to a local solution with graeturacy), while a low resolution representation is used
far away from the vehicle (thus incorporating the ultimatalgobjective).

In this article, we assume a world environmemnitc R? that includes the obstacle spafec W and the obstacle-
free configuration spac& = W\ O of all feasible states. We employ the wavelet transform tdope the required
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multiresolution decomposition dfy. The fast lifting wavelet transform (FLWT) offers a fast decamsition of a
function at different levels of resolution, which can bedw/ias fast as the classical wavelet transfofrurthermore,
the FLWT can be implemented using the integer arithmeticciwlieduces the computational cost dramatically.
This makes the FLWT especially suitable for processing usingllsmicro-controllers. The use of FLWT has also
the added benefit of allowing the construction of the assediaell connectivity relationship directly from the
wavelet coefficients, thus eliminating the need for quadtleeomposition, as in Ref. [10].

We employ the hierarchical path planning principle to find dptéimal path on the topological graghinduced
by the previous wavelet-based cell decomposition. Nantbly,optimal path from an initial state to a final state
may contain mixed nodes across all resolution levels exaeftte finer resolution level, where the path is resolved
through feasible states only. Hierarchical path planngigniown to be more flexible than other methods that search
only through free nodes [12].

In the sequel, we present a multiresolution hierarchicah gdanning algorithm, which is an extension of the
algorithm developed in Ref. [10], and deals with the conmggtrelationship between cells of varying sizes. The
paper is organized as follows. In Section Il we describe airesthlution decomposition ofV using the 2D Haar
wavelet system. In Section Il we present an efficient algorifor constructing the adjacency list of a topological
graph by the direct use of the wavelet coefficients. The mahirgion hierarchical path planning algorithm is shown
in Section IV. Based on the hardware in-the-loop simulatidiL§) results in Section V, we discuss the advantages
and disadvantages of the proposed algorithm over a stamfyauaimic, incremental path planning algorithm used
in the literature.

II. AMULTIRESOLUTION DECOMPOSITION OFW
A. The 2D wavelet transform

The idea behind the wavelet transform is to represent a fumgtic £2(R) via a linear combination of elementary
basis functionsp s and;; as follows

F@) = amppup(@) + D> digtin(@), 1)

kez j>J ke

where ¢ (z) = 272¢(272 — k) and v, = 29/2¢(272 — k). The choice ofJ determines the low resolution,
or the coarse approximation ¢f, spanned by the scaling functiafy x(x). The rest ofL?(R) is spanned by the
wavelet functions); ;. (x) which provide the higher, or finer resolution details of thediion. In other words, when
analyzing the functiory’ at the coarsest level (low resolution), only the most salieatures off will be revealed.
Adding finer levels (high resolution) implies adding more andre details of the functiorf. The expansion (1)
thus reveals the properties gfat different levels of resolution [13], [14]. In additiom the ideal case both the
scaling function and the wavelet function have compact sttpghat is they are non-zero only on a finite interval
so they can capture the localized featuresf of

The wavelet transform can be readily extended to the two-déioeal case by introducing the following families
of functions

Dje(,y) G5 (2)Bje(y), (2a)
Uio@y) = din(@)vsy), (2b)
Uho(@y) = ir(@)dsey), (2¢)
Wy o(r,y) = Yin(@)iey). 2d)
Given a functionf € £2(R?) we can then write
3
f(z,y) = Z aske® k(. y) +ZZ Z & oV o, y) 3)
= i=1 j>J klel

The computational complexity of the lifting scheme is still of ord®fn) wheren is the input data [11], however, the computational
time may decrease by half according to wavelet basis.
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Fig. 1. A typical one-stage two-band filter banks used for implementingligerete wavelet transform.
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where, for the case of orthonormal wavelets, the approximatoefficients are given By

Aj e = / / (2, y) @) po(z,y)dz dy, (4)
and the detail coefficients by o e
o = / / fla,y) Wy o(2,y) dody. (5)

The key property of wavelets used in this paper is the facthieaexpansion (3) induces the following multiresolution
decomposition of£?(R?)
ﬁQ(RQ) =V;eW;eWij1 b, (6)

WhereVJ = Spank7€€Z{¢J7k7g} and Wj = Spank’gez{\ll}’k’e, qjik,f’ \Il?,k,f} fOI’ j Z J
In this paper we use the Haar wavelet system for reasons thabtegome apparent shortly. The Haar scaling

function
1 ifzelo1),
= 7
o) {0 otherwise, 0

and the Haar wavelet function
1 ifzel0,1/2),
Ye) =< -1 if z€1/2,1), (8)

0 otherwise,

have compact support o9, 1]. Hence, each scaling functiop; () and wavelet function); ,(x) in the Haar

system has support on the dyadic intervaj, 2 [k/27, (k + 1)/27] of length 1/27 and does not vanish in this
interval [13], [15]. Subsequently, we may associate the dimoensional scaling functio®, ; , and the wavelet

function W7, , (i = 1,2,3) with the rectangular celrt»};j 2 ik x Iy

B. Fast lifting wavelet transform (FLWT)

Implementing the wavelet transform in practice requireslidg with a discrete signal. The basic step in a typical
discrete wavelet transform (DWT) involves the use of filter ksarFigure 1 shows a discrete signa filtered by
two complementary high- and low-pass (decomposition) §ilieand i before it is down-sampled. The results of
this operation are the next coarser approximation and ldatafficientsa,,_; andd,_1, each containing half as
many samples as the input signg]. For the inverse transform, first the signals_; and d,—; are upsampled
by inserting zeroes between every sample. Subsequenthiwthesignals are filtered by the low- and high-pass
(reconstruction) filterg andk, respectively, and then added together. This sequence odtapes results in perfect
reconstruction of the original signal,. Details of the filter bank implementation of wavelet tramsfe can be
found, for instance, in Refs. [16] and [17].

2In the more general case of biorthogonal wavelets projections on #e sgpanned by the dual wavelets and dual scaling functions
should be used in (4) and (5).
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Fig. 2. One step decomposition using the lifting scheme with the lazy wavelet.

The fast lifting wavelet scheme, originally introduced infR€18] and [19], is a new method for building
wavelets directly in the time domain, thus avoiding the u$d-aurier analysis. Moreover, the scheme can be
extended to construct the so-called second generationletaye/hich have certain benefits for handling boundary
effects, irregular samples, and arbitrary weight funcifhv].

The typical lifting decomposition scheme is depicted in FigTBe first block in this decomposition splits the
original signala,, into two disjoint sets of samples containing the odd and tem éndexed samples (Lazy wavelet).
Because the even and odd subsets are correlated to eacHoathisr, each signal is lifted by the opposite signal
after passing through the corresponding opergfoendl/ (the dual and primal lifting, or the prediction and update,
respectively). Finally, the results are normalized with tdomstantst, and k4, to end up with the approximation
and detail coefficientsy,,_, andd,_1, respectively.

For the case of the unnormalized Haar transform, the duaddifdoes nothing more but calculate the difference
of two signals

dp—1k = An2k+1 — On 2k, 9)

whereas the primal lifting calculates the coarser apprakion coefficients having the same average value as the
original signal, by updating the even samples using theipusly calculated detail signal as follows

n—1,k = An 2k + dn—l,k/z- (10)

It has been proved that all classical wavelet transformskbmaimplemented using the lifting scheme [20]. Most
interestingly, the inverse transform is readily found byemsing the order of the operations and by flipping the
signs.

The lifting scheme has a humber of algorithmic advantages) aa faster computation speed (twice as fast as the
usual discrete wavelet transforni-place calculation of the coefficients (that saves memory), imntediaverse
transform, generality for extension to irregular probleets. In particular, the lifting scheme is applicable to ynan
applications where the input data consists of integer sasnpJnlike the typical wavelet transform where floating
number arithmetic is implicitly assumed, the lifting scheenan be easily modified to map integers to integers, and
is readily reversible to allow perfect reconstruction [ZLhis reconstruction is possible by adopting the sequential
transform by modifying Eq. (10) as follows [22]

dp—1k = An2k+1 — An 2k,
Up—1,k = On 2k + Ldnfl,k/ij

where,|-| is the rounding operator. In the sequel, we use the fastdifdaar transform for two-dimensional signals
of integer samples using a sequential 2D scheme; that is,enferm two one-dimensional transforms through the
rows and then columns of the input data.

(11)



C. Wavelet decomposition of the risk measure

Without loss of generality, we Iety = [0, 1] x [0, 1], which is described using a discrete (fine) gric26f x 2V
dyadic points. The finest level of resolutiofy,.x is therefore bounded bwy. It follows from Eq. (3) and the
accompanying discussion that the Haar wavelet decomgositi resolution levell > J.,in, given by

2J_1 3 N-— 121 1
Z ar k@ rke(x,y +ZZ Z et Ve (2,9), (12)
ke =0 i=1 j=J k=0

and it induces a cell decomposition W of square cells of maximum sizg/2” x 1/27.
Assume now that we are given a functiem : YV — M that represents the “risk measure” at the location
x = (z,y), where M is a collection ofm integer distinct risk measure levels defined by

Mé{Mi:M1<M2<”-<Mm}. (13)
The obstacle spad® is defined as the space where the risk measure values exceedin teeshold), that is,
O={xeW]|mix) >M, McM}. (14)

For x € F, we may think ofrm(x) as an indication of the proximity of the agent to the obstagace or the
probability thatx € O.

We construct approximations o¥ at distinct levels of resolutiod,,;, < j < Jmax at ranges:; from the current
location of the agenty = (¢, 7o), in the sense that the resolutigris used for all points inside the neighborhood

N(x0,7) £ {x €W : ||x — xolloo < 75} (15)

wherer; <r; <rj.. . By this, we imply that the finer resolutiof,,., is used for points close to the current
location, and coarser resolutions at different levels aedwelsewhere, according to the distance from the current
location. Hence, the representation)of gets coarser further away from the current location. FiguikuStrates
this situation. The choice of,.x is determined by the requirement that at this level all cedda be resolved
into either free or obstacle cells. The choice.ffi, as well as the window spar; are dictated by the on-board
computational resources.

Let nowZ(j) £ {0,1,3,---,2/ — 1} and let

K(G) 2A{k€Z() | LixN[zo—rjz0 + 1] # 2}, (162)
L(j) E£{LeZ(j) | LNy —rjy0 + 1] # 2} (16b)
Then the wavelet decomposition of, given by
3 Jmax—1
mz,y) = Y s ke@o k(@ y) + D Z &30V 1o (2,), (17)
kAl ET (Jmin) i=1 j=Jmin kEK())

LeL(])

induces, with a slight abuse of notation, the following rimakolution cell decomposition oW
Ca=AC)"™ & - & ACT™, (18)

where, ACY is a union of cellsz], , of dimension1/27 x 1/27.

I1l. M ULTIRESOLUTION GRAPH CONNECTIVITY
A. Computation of Adjacency List from the FLWT

In the previous section we described the construction of Hinesolution cell decompositiod,; in (18) of W
using the FLWT. We now assign a topological graph= (V, E) to C; as follows. The nodes aof represent the
cells c}M in C4 and the edges represent the connectivity relationshipdstwhose nodes. In this section we show
that the connectivity of the grapi can be constructed directly from the wavelet coefficients.iNEdgntly, we
compute the adjacency list ¢f directly from wavelet coefficients obtained from the FLWT.



Fig. 3. Multiresolution representation of the environment according to igtarcce from the current location of the agent.

As the scaling functiom; ;. , and the wavelet function®’, , (i = 1,2, 3) of the 2D Haar wavelet are associated

with square ceIIs«:}ﬂ, the corresponding approximation and nonzero detail comfic encode the necessary
information regarding the cell geometry (size and locgtidRecall that the approximation coefficients are the
average values of the risk measure values over the cellsthendetail coefficients determine the size of each cell.
To this end, consider a ced{M at level jy, whose dimension /270 x 1/2/0 and is located atk, ¢). A cell will

be calledindependentf it is associated with a non-zero approximation coefficient; ,, while the corresponding
detail coefﬁuentsﬂ ke (0=1,2,3) atleveljo < j < Jmax are all zero. Otherwise, the cell is marked apagent
cell, and is subdmded into fodeaf cells at leveljy + 1. If a leaf cell cannot be subdivided further, it is classified
as an independent cell. In Fig. 4, the top-most parent@@llls subdivided into three independent cells at level
jo + 1 with each non-zero approximation coefficient in the guadtaht and 1l (all zero detail coefficients). For
quadrant 1V, the cell is further subdivided into four indadent leaf cells at levely + 2.

Assume now that we are given the Haar wavelet transform ofrigle measure functiomm up to the level
Jmin. The coarsest level of the cell dimension is set/tg,. In Fig. 5 the initial coarse grid is drawn on the left.
The agent is located at = (x,y) and the high resolution horizon is given by Recalling expressions (15), we
distinguish cells at distinct resolution levels, by stagtfrom a coarse ceHJ"Z, and by determining if the cell either

partially intersects or totally belongs to the $€ét{x,r). The ceIIc}je is easily ascertained to satisfy this property
by choosing the indices such that, ¢) € (K(jo), £(jo)). If the cell needs to be subdivided into higher resolution
cells, the inverse fast lifting wavelet transform is firstfpemed on the current cell (local reconstruction) in order t
recover the four approximation coefficients at leygh- 1 and the corresponding detail coefficients. We then adopt
the raster scan method [23] (zigzag searehll-1l1 —1V) to examine each cell inside the parent cell overlapping
with NV (x,r). This procedure is recursively repeated until the maximusoltgion levelJ,,. is reached. Figure 5
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Fig. 5. Recursive raster scan method for identifying independent cells

illustrates the recursive raster scan search. Once a agltigynized as independent, we assign a node in the graph
G with the node cost being the approximation coefficient regaresg the average risk measure over the cell. In
addition, the detail coefficients associated with the cuaroii are all set to zero; this will provide the necessary
connectivity information between the cells later on.

After a cell has been identified as an independent cell, weckehe adjacent cells in order to establish the
adjacency relationship with the current cell. Recall th tellsc; andc; are adjacent if

dciNdc; £ @, i ],

wheredc; denotes the boundary of the cell For our case of square cells, this implies that two cellsaaijacent

only along the following eight directions: Left, top, rightpttom, and the four diagonal directions. Following the
recursive raster search for cell identification, the adjagesearch requires establishing links between two cells
that have been identified as independent cells. Recallingtitigaraster search progresses from left to right and
from top to down (zigzag progress) as illustrated in Fig. 5, seafine the adjacency search to the following
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Fig. 6. Basic connectivity properties with respect to the location of the lelaf ¢

directions: Left, top-left, top, and top-right from the oemt cell. By doing this, we render half of the links (out
of eight connectivity) to be connected from the current,caid the remaining links with the current cell will
be connected as the recursive raster scan progresses texheefls. In addition, because we deal with cells of
different dimensions, it is required to devise a generichoétto find the adjacency relationship between the cells.

Figure 6 illustrates the basic search direction of each le#ifinside a parent cell. The dashed arrow points
towards an external search region, that is, an adjacentaeltl be found beyond the parent cell, whereas the solid
arrow points towards an internal search region that belomglse parent cell. In each search, we implicitly assume
that the level of adjacent cells may vary from that of the pacell to J,.x (external connection), or from that of
the current cell ta/.x (internal connection).

A leaf cell inherits the search region from its parent cellapse search direction turns out to be one of the solid
arrows in Fig. 6. Figure 7 shows this inheritance property. k. Fi the current cell is chosen to bé”. This

cell is a leaf cell of the parent celf,"™, which further becomes a leaf cell of the top-most parerit @éll The

cell ¢ is located on the fourth quadrant inside the top-most pazehi)”, so that the search region fof,

ends up with the internal searches at the lgyel 1, whose adjacency search property is inherited to thec{féﬁ

for left, top-left, and top direction searches. Having asired the basic search directions, we refine the adjacent
search looking for opposite cells which must be independadtadjacent to the current cell. Because the opposite
cells of the current cell could have different dimensiorssdapicted in Fig. 7, we establish links by examining the
associated detail coefficients of the opposite cells. Aldrggleft search direction (If%°+2, as illustrated in Fig. 7,
one finds that only one independent cell at leyek 1 is linked to c{°+2.

The adjacency search algorithm refines its search to the highels if the opposite cell is not an independent
cell, that is, if it is comprised of finer cells. This refinemenbsequently forces a search of cells of the finer
dimension (level) which are neighboring to the current.c8libsequently, the detail coefficients of the opposite
cells are examined in order to find the next finer cell that is @jato the current cell. For the top-left search
direction of c{OH, as illustrated in Fig. 8(a), the search process initiallpreines the celb{0+1 located at the
top-left corner of the current cell through the correspagdiletail coefficient. Provided that the detail coefficient
associated with the ced{“Jr1 takes a non-zero value, the cell is assumed to be not an indepecell. Subsequently,
the cellc{‘”rl is subdivided and the search process repeats at jgvel when the opposite cell to the current cell
becomes an independent adjacent cell. In Fig. 8(a), since thésts no other independent cells along the top-left
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Fig. 7. Searching an adjacent cell along the left search direction.

direction except the shaded one, a bidirectional link ialdithed between the current and the opposite cells.
Similarly, for the top search direction, two cells at leygl-3 and one at levej, +2 are found to be independent
and adjacent to the current cell. The bidirectional linksareordingly connected from the current QéPWQ to those
adjacent cells. Figure 8(b) depicts this situation. Findig. 9 shows an example of the graph structure obtained
from the multiresolution cell decomposition associatethwiiie wavelet coefficients. Without loss of generality the
nodes are located at the center of each cell. The solid lines #iie connectivity relationship between the cells.

B. Cost assignment fad* search

The A* algorithm is a graph search algorithm that finds a path fromnérali node to the goal node in the
graph. The algorithm utilizes heuristic estimaté:(v) that ranks each nodeby a best cost estimate to reach the
goal from the current node [24]. The algorithm visits the reodethe order of the heuristic estimate, so thé
algorithm is known as a best-first search algorithm. The kegnefd of the4* algorithm is that it expands each
node from the priority queue that is ordered by (lower valas higher priority)

f(v) = g(v) + h(v), (19)

where the cosy(v) is the actual cost of the path up tg i.e. the sum of the edge costs from the initial node,
and h(v) is the heuristic estimate at When a node: is expanded, the adjacent nodes to the current node are
exploited. Letv be the adjacent node, then it follows that we evaluate theabcbstg(v) to see if the transition
from u to v results in lower cost than any other transitionsvtoThe algorithm then sets a back-pointg) by

its preceding node. This process iterates until the goal node is reached andhey obdes have a lower cost to
the goal.

The A* algorithm is complete in the sense that it is always guasghte find a solution if a solution exists. In
addition, if the heuristic functioi(v) is admissible, that is, it uses an underestimate of the lactish of reaching
the goal, thend* is optimal. Details about the implementation of tdé algorithm can be found, for instance, in
Ref. [25]. ‘

To the cell decomposition (18) we associate each nodej to a cellcfae. Moreover, sincegj is a topological
graph, we may associate each nadwith some pointx € c{d Without loss of generality, we choose the center

of the cell. Letcellg(v) denote the center of the corresponding celk K ¢] , we will write v = nodeg(x).
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Fig. 8. Refined adjacency search algorithm.

Fig. 9. Connectivity relationship constructed from the multiresolution celbdwosition over three levels.

To each directed edge:, v) of G we assign an edge cost, given as
J(u,v) = rm(cellg(v)) + «||cellg(u) — cellg(v)]|2, (20)

wherea > 0 is a weight constant. The first term in (20) is proportional te grobability that the target node is
close to an obstacle, while the second term penalizes thdidEan) distance betweetellg(u) andcellg(v).
Suppose now that we are given a pathyof 1 consecutive, adjacent nodesgnas follows

P = (vo,v1,"* ,vg). (21)
We can then assign a traverse cost to each node in theMatiduced by
9(vi) = g(vi—1) + T (vi—1,vi), =1, ,q. (22)
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The value ofg(v) represents the (accumulated) cost of the path fogro vy, (k < q), i.e. the weight of the edges
followed up tov,. We use the following heuristic estimate

h(v) = ||cellg(v) — cellg(vy) |l oo, (23)

wherev; = nodeg(xy).

The A* algorithm then finds a path that minimizes the cost in (22) ®fthal node, or determines that such a
path does not exist.

IV. MULTIRESOLUTION PATH PLANNING
A. Multiresolution path planning algorithm

The proposed multiresolution path planning algorithm pediseas follows. Starting from(tg) = xo at time
t = ty, we construct using the approach of Section Il a cell decoitipnsC,(ty) of W. A topological graph,
and the adjacency list of its nodes are obtained using theoapp of Section Ill. Let the corresponding graph
be G(to) and letv} € G(ty) and v} € G(to) be the initial and the goal nodes such th@t= nodeg,(xo) and
v? = nodeg,)(xy), respectively. Using thed* algorithm we compute a patR(ty) in G(to) of free and mixed
nodes fromw! to v?c assuming that such a path exists. [It,) be given by an ordered sequence/of- 1 nodes
as follows

P(t0> = (Ugv U(1)> Ty ’Ugj—la Ugj = US)‘) (24)

It is assumed that{ is a free node owing to the high resolution representatiofloftlose tox,. The agent
subsequently moves fronf) to v9. Let nowt; be the time the agent is at the locatieft;) = cellg(to)(v‘f) and
let C4(t1) be the multiresolution cell decomposition ¥ aroundx(¢;) with a corresponding topological graph
G(t1). Applying again thed* algorithm we compute a (perhaps new) patGif; ) from v} = nodegs,)(x(t1)) to
v} = nodeg ) (xy) if such a path exists. LeP(t1) be given by the ordered sequencelpf- 1 nodes as follows

P(to) = (U(l)v ’U%, ) ’Ulllflﬁ Ulll = ”U}') (25)

The agent subsequently movesupat locationx(ty) = Ce”g(tl)(v%) at timet,.
In general, assume the agent is at locati¢) at time¢;. We construct a multiresolution decompositiGy(t;)
of W aroundx(¢;) with a corresponding grapfi(t;). The A* algorithm yields a pattP(¢;) in G(¢;) of lengthl; +1,

P(t;) = (vé, vll', s vlii_l, vf = 'ch), (26)

where v, = nodeg;,)(x(t;)) and v} = nodeg,)(xs) if such a path exists. This iteration process terminates at
some timet; when||x(t;) — x;|loo < 1/27==. At the last step the agent moves frodt ;) to x;. A pseudo code
implementation of the multiresolution path planning altfon is given in Fig. 10. Note that the actual path followed
by the agent is given by the sequence of noflesdeg ;) (x(to)), nodeg,) (x(t1)), - - - , nodeg,) (x(ty)) }-

B. D* lite path planning algorithm

The D* algorithm has been originally proposed by Stentz [26], [2#f]dlanning a path in unknown or partially
known environments. Prior t®*, several replanning strategies have been proposed to dghamic planning
problems for locally-directed wandering [28], local modifiion of initial path [29], and obstacle perimeter detogrin
[30]. Although these methods are complete, they are sulaptaind computationally inefficient. On the contrary,
D* produces an optimal path by adopting an efficient incremesgalch to reduce the time required to replan.
In particular,D* is more appropriate when dealing with an environment haeairilgrge number of states, reusing
information from the previous search to find the solution atribxt step. Koenig and Likhachev introduced Lifelong
PlanningA* (LPA) [31] which employs heuristic estimate liké&*, while reusing information from previous searches
to find a solution much faster than solving each iteration femnmatch. Furthermore, Koenig and Likhachev presented
the D*-lite algorithm, derived from the LPA algorithm, which imphents the same planning strategy7as but
is algorithmically different. TheD*-lite algorithm simplifies the maintenance of priority queuéhus it does not
use complicated conditional statements, thus ending ulp sVibrter codes than the origin®" algorithm. In the
sequel, we employ th®*-lite algorithm to the path planning problem on a non-tidigavironment. By comparing
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BEGIN PATH PLANNING ALGORITHM
{
1=0;
X(ti) «— X0;
while |[Ix(t;) —xp|| > 1/2me=
{
conmput e rm(x,4) for all x € W;
construct Cy(i) at level Jyin;
construct G(i) = (E(i),V(i));
’Ull- — nodeg(i) (X(t@)),
v} < nodeg ;) (Xf)'; '
P(i) — Ast ar (vf, %, G(@));
if Pl)=9o
report FAILURE;, break;
x(tit1)  cellg()(v);
Move to x(tiy1);
1— 1+ 1;
}
}
END PATH PLANNING ALGORITHM

Fig. 10. Pseudo-code implementation of proposed multiresolution pathiptascheme.

the D*-lite algorithm with the multiresolution path planning alithm, we discuss the benefits and shortfalls of
using the multiresolution path planning algorithm over elite algorithm.

We apply the Haar wavelet transform up to resolution leyet J.,;, to obtain the wavelet decomposition of
rm, given by

271 3 N-12/-1
m(z,y) = Y aspe@ope(z,y) + Y D oV, y). (27)
=0 i=1 j=J k(=0

A uniform cell decompositiorcc{ at level J on W is induced from Eg. (27), and is comprised of cei}@l of
dimensionl /27 x1/27. We adopt the eight-connectivity relationship betweenctits. The connectivity relationship

is easily found by bookkeeping the location of each cell digio the indices: and /. It should be noted that the
adjacency relationship will remain the same throughoutrépéanning, but the edge costs will change incrementally
to incorporate the information from the previous step.

Suppose the agent is equipped only with a proximity sensdrdbases the environment close to the current
location with high accuracy. That is, the sensor providesrmation classifying the neighboring environment into
a free region or obstacle region. L8(i) be the known region up té = ¢; using a sensor with the range,
defined by

SE) =83 —1) UN (x4, 7)) (28)

wherex; is the current location of the agentat ¢; and N(x;, ;) represents the effective sensory region at that
moment. In Eq. (28) it is assumed that the agent navigatesigaljnunknown environment while updating the
map from the collected information. In order to take thisga®s into consideration for replanning, we assign a
conditional cost to each edde, v) which depends on the relative location of the edges t@s follows,

T(u,v) = {rm(cellg(v)) + [|cellg(u) — cellg(v) |2, if u, v €S, (29)

||cellg(u) — cellg(v)||2, if u, veW\S.
It follows that for the edges outsidg we simply impose the traversal cost between nodes owingetaiiform size

of cells. If this is the case, a general path planning algorisuch as Dijkstra’s o* simply computes a shortest
path from an initial node to the goal node which might paseuph obstacles outsidg. Nevertheless, whenever
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BEGIN D* LITE PATH REPLANNING ALGORITHM
{
1= 0;
conmput e rm(x) for all x € W;
construct C4 at level Jypax;
construct G = (E,V);
Ustart <— nodeg(xp);
Vgoal < Nodeg(xs) ;
Initialize();
ComputeShortestPath(vstart; Vgoal; 9);
Vi <— Ustart;
Vlast < Vi3
whi l e (Ui 7é vgoal)
{
1—1+1;
Vi = Argmin, ¢ Agi(u,,..) (I (Vlast; v') + g(v"));
Move to v
Scan graph for changed edge costs;
I f any edge costs changed;
{
km — km + h(vlastv Ui);
Viast < Ui,
For all directed edges (u,v) € Ew th changed edge costs
{
Updat e the edge cost J(u,v);
UpdateVertex(v);

}

ComputeShortestPath(v;, vgoal, G);
}
}
END D* LITE PATH REPLANNING ALGORITHM

Fig. 11. Pseudo-code implementation®f lite path planning scheme.

the map is updated using contingent information from thesserwe accordingly update the corresponding edge
costs by appending the obstacle cost to each edge as givef)in (

The mainD*-lite path planning algorithm proceeds as follows. From thédaum cell decomposition and the
corresponding graph, we solve for an initial path frogn= vgare t0 vg0a1 @ssuming only the distance cost for edge
weights. Letv; be the node next tog in the path. The agent subsequently moves frgmo v,. At time t = ¢;
when the agent is located &, the algorithm continues to scan the graph for changed edlgfs.df any edge costs
have changed, then the algorithm updates the correspordigg weights. Finally, a new path is computed from
v1 10 vg0a1, While incorporating the updated edge weights. It shoulchbted that if no edge costs have changed
the agent moves to the successive nodi the previous path that has the minimum co&wj.s;, v') + g(v').

Similar to A*, the D*-lite algorithm also incorporates a heuristic estimate Hoase the nodes from a priority
gueue. However, as the agent detects changes in the edge thesipriority queue is reordered to render itself
consistent. This might be an expensive task, so instead oflegng the priority queue every time, Koenig and
Likhachev utilizes adynamic heuristic constant,, [32] to keep the priority queue unaltered regardless of the
change of the edge costs. The iteration terminates at sonegtimhen the goal node is reached. A pseudo code
implementation of theD* lite incremental path planning algorithm is given in Fig. Nbte that the actual path
followed by the agent is given by the sequence of nofl@s= vstart, U1, -+ , Vi—1, Vi = Vgoal }-
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V. HARDWARE IN-THE-LOOP SIMULATION RESULTS

A. Hardware overview

A UAV platform based on the airframe of an off-the-shelf R/@dgl airplane has been developed to implement
the multiresolution, wavelet-based path planning alpanidescribed above. The development of the hardware and
software was done completely in-house to have a full acdebe@ntire system. The on-board autopilot is equipped
with a micro-controller, sensors and actuators, along Withcommunication devices that allow full functionality
for autonomous control. The micro-controller (Rabbit RCKHBB running at 30 MHz with 512 KB RAM) provides
data acquisition, processing, and communication with tleeirgd station. It also runs the low-level control loops
for basic stabilization and way-point navigation. The omdobsensors include angular rate sensors for three axes,
accelerometers along all three axes, a three-axis mago@tipass, a GPS sensor, and absolute and differential
pressure sensors. Figure 12 shows the UAV platform with thbaard autopilot.

Microcontroller M12 GPS Receiver

19)8Wo013]829e
‘a)el saxe-g

Rx/Servo ports

Fig. 12. A small fixed-wing UAV equipped with an autopilot for hierarchipath planning control.

A realistic hardware-in-the-loop simulation (HILS) enviroent has also been developed to validate the UAV
autopilot hardware and software development utilizing IM#® and Simulinl®. A full 6-DOF nonlinear aircraft
model is used in conjunction with a linear approximation loé taerodynamic forces and moments, along with
Earth gravitational (WGS-84) and magnetic field models. Dedaihodels for the sensors and actuators have also
been incorporated. Four independent computer systemssackin the hardware-in-the-loop simulation (HILS) as
illustrated in Fig. 13. A 6-DOF simulator, the flight visualimam computer, the autopilot micro-controller, and the
ground station computer console are involved in the simafaturther details about the UAV platform, autopilot
and HILS set-up can be found in [33], [34] and [35].
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Fig. 13. High fidelity hardware-in-the-loop simulation (HILS) environmibrat enables rapid testing of the proposed path planning algorithm.

B. Simulation results for the proposed algorithm

In this section we present simulation results of the prog@dgorithm for a non-trivial scenario. The environment
W is an actual topographic (elevation) map of a certain US staith fractal-like characteristics, shown in Fig. 14.
The environment is assumed to be square of dimensiork128 units. Hence the finest possible resolution is
N = 7. Taking into account the available memory of the micro-oaligr, we choose the fine level ak,.x = 6
and the coarse level a§,;, = 3. This makes the total number of nodes in the graph not excesantdximum
count of 256 that corresponds to the maximum allowable kigigize of the micro-controller. The ranges from the
current location at distinct levels of resolution are seddcas follows,

(re,r5,74) = (8,15,30)  in units,

which dictates that the higher resolution representationand the current location of the agent are used inside an
area of60 x 60 unit cells at levelJ = 4 down to an area of6 x 16 unit cells at the finest level,,.x = 6.

The objective of the UAV is to follow a path from the initial gen to the final position while circumventing
the obstacles over a certain elevation threshold. Since nHene path planning problem at the finest resolution
is computationally prohibitive, the proposed algorithnt@mmodates the need for the on-line implementation on
the micro-controller by limiting the amount of the infornaat to process, thus computing an immediate path with
high accuracy within the allowable time scale of the micowvcoller.

The results from the multiresolution path planning algenthre shown in Fig. 14. Specifically, Fig. 14 shows
the evolution of the path at different time steps as the agewes to the final destination. Figure 14(a) shows the
agent’s position at time stefp—= ¢5 along with the best proposed path to the final destination bgished-dot line
at that time. Similarly, Fig. 14(b) shows the agent’s posit@riime stept = t5;. As seen in Fig. 14(c), the actual
path followed by the agent differs from the one predictediihex Figs. 14(a) or 14(b). This is due to the fact that
at timets andio; the agent does not have complete information for upcomirgitipas up to confident level. In
particular, as the agent gets closer to the obstacle as showig. 14(b), it recognizes the presence of obstacles
and redirects the path to avoid any obstacles. The agenteagalt final destinatior, in a collision free manner,
as seen in Fig. 14(c).

C. Simulation results for th@*-lite algorithm

In this section we present simulation results of M&lite path planning algorithm for the same environment
used in the previous section. It is assumed that the ageigatas over the unknown environment, while updating
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TABLE |
COMPUTATIONAL COST OF THE PROPOSED ALGORITHM BY THE OABOARD AUTOPILOT.

Multiresolution cell decomposition using FLWT 452 [msec]
Construct the connectivity relationship agd 292 [msec]
Compute a path usingl™ employing the binary heap 202 [msec]
Average number of nodes of each ~200

the map with the information gathered from a proximity sen¥de adopt a uniform cell decomposition of cell
size theJnax = 6 which is the same as the finest level of the previous section.rdinge of the proximity sensor
is chosen to beg = 7, thus resulting in the high resolution window by a 7 by 7 squawids.

The results from theD*-lite path planning algorithm are shown in Fig. 15. Specificalfig. 15 shows the
evolution of the path at different time steps as the agentemdo the final destination. At each step, the best
proposed path is drawn by a dashed-dot line and the actuafglédwed by the agent is drawn by a solid line. As
seen in Fig. 15(c), the actual path differs significantly frdre bne predicted in either Figs. 15(a) or 15(b). This
is attributed to the fact that the environment is unknowniarprand the path is computed using the distance cost
outside the high resolution area. Hence, as shown in Fig) 1@ agent is unable to anticipate the existence of
the obstacles outside the high resolution area. Nonethedssthe agent gets closer to the obstaclesthite
algorithm effectively replans the entire path circumvegtthe obstacles, reaching the final destination.

VI. COMPARISON

The proposed multiresolution path planning algorithm wadtewr in C code and implemented on the on-
board autopilot equipped with a Rabbit RCM-3400 micro-colfgr. Because the micro-controller has limited
computational resources (10,000 instructions per secamd,512 KB RAM for handling variables), the code has
been written giving special attention not only to the accyraf the output, but also to the computational speed
during implementation. Specifically, most of the computatidar the proposed algorithm is done using integer
arithmetic. Given a risk measuren of integer samples, the integer fast lifting wavelet transf provides the
approximation and detail coefficients that are used to cocisthe adjacency relationship between cells. Tfe
algorithm is then called to find the shortest path in this graph

Table | shows the computational cost of the proposed patimpig algorithm using the on-board autopilot. One
step of the path planning iteration takes 946 [msec] for etten. Ascertaining the execution time of the proposed
algorithm, we actually choose to implement the proposeti p&nning algorithm on-line in every three second.
Hence, the autopilot manages not only to execute the basks tsuch as data acquisition and processing, inner
loops control, and etc., but also to plan a path in a seamlessen.

We compared the computational costs between the proposkidesniution path planning algorithm and ti¥ -
lite algorithm, using different simulation results for seal cases. The simulations were carried out on an IBM-PC
(Pentium M 2.0 GHz, 1 GB RAM), based on codes written in C forlengenting both path planning algorithms.
The proposed path planning algorithm accomplishes the patmimg objective of reaching the goal in less number
of iterations, as shown in Tab. Il, than tH&"-lite algorithm. This is due to the fact that the proposed algm
effectively manages the information at coarse resolutgmas to compute a preferred path. Thelite algorithm,
however, relies on the information at finer resolution thatrigeiled up to the current time, thus requiring the agent
to explore the environment and to replan the path along theement of the agent. In the worst case, the total
number of iterations by th®*-lite algorithm increases significantly (e.g. Scenario IVydngse of the existence of
unknown obstacles.

The total computation time of the proposed algorithm is atgdiby adding the computation times throughout
each iteration. For th®*-lite algorithm, the total computation time consists of timee for initializing and updating,
which is shown to be smaller than that of the proposed algorifTheD*-lite algorithm is computationally efficient
in the sense that it reuses information from the previous. $#tost of the computations in the proposed algorithm
are devoted to the construction of the adjacency list at ptniming step, as shown in Tab. Il. The performance of
the proposed algorithm can thus be improved by using, say;donnectivity instead of eight-connectivity during
the adjacency search algorithm. This will possibly halvedbmputation time with little performance degradation.
On the other hand, the proposed algorithm requires littlenorg as shown in Tab. || compared ©*-lite. For
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TABLE I
THE COMPUTATIONAL COST COMPARISON BETWEEN THE MULTIRESOLUMN PATH PLANNING V/S THED* LITE.

Items Scenario | Scenario Il Scenario Il Scenario IV Scenario V

D*-lite Wavelet | D*-lite Wavelet | D*-lite Wavelet | D*-lite Wavelet | D*-lite  Wavelet
# iteration 35 31 93 50 61 40 123 52 44 43
# nodes inGg 4096 201 4096 194 4096 192 4096 185 4096 194
Data processing [msec] 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03
Adjacency search [msec] - 0.977 - 0.987 - 0.969 - 0.94 - 0.958
A* search [msec] - 0.1 - 0.125 - 0.094 - 0.138 - 0.066
Init. D*-lite search [msec] 1.87 - 2.03 - 2.03 - 1.87 - 2.03 -
D*-lite update [msec] 4.1 - 23.8 - 11.3 - 43.9 - 12.7 -
Total Comp. time [msec] 5.97 33.387 | 25.83 55.6 13.33 4253 | 45.77 56.056 | 14.73 44.032
Computational cost (%) 17.8 100 46.46 100 31.35 100 81.65 100 33.45 100
Memory cost (%) 2037.8 100 2111.3 100 2133.3 100 22141 100 2111.3 100

on-line, on-board path planning, the proposed algoritheitha advantages of scalability according to the available
on-board computational resources.

VIlI. CONCLUSIONS

Autonomous path planning for small UAVs imposes severgioisins on control algorithm development, stem-
ming from the limitations imposed by the on-board hardward the requirement for on-line implementation. In
this work we have proposed a method to overcome this problemmsing a new hierarchical, multiresolution path
planning scheme. The algorithm computes at each step a eswoltition representation of the environment using
the wavelet transform. The idea is to employ high resolutiosecto the agent where is needed most, and a coarse
resolution at large distances from the current locatiorhefagent. As an added benefit, the connectivity relationship
of the resulting cell decomposition can be computed diyetim the nonzero detail coefficients of the wavelet
transform. The algorithm is scalable and can be tailored ecatfailable computational resources of the agent.
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Fig. 14. Path evolution and replanning. Figures on the left show thentlyrtentative optimal path obtained from tb&" algorithm, based

on the available multiresolution approximation of the environment at diffeime steps. Figures on the right show the actual path followed
by the agent.
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Fig. 15. Path evolution and replanning usiBj-lite algorithm. Figures on the left show the currently tentative optimal pathitoed from
the D*-lite algorithm, based on the distance cost outside the high resolution ageses-on the right show the actual path followed by the
agent.



