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Abstract

In this article we propose a new online multiresolution pathplanning algorithm for a small unmanned air
vehicle (UAV) with limited on-board computational resources. The proposed approach assumes that the UAV has
detailed information of the environment and the obstacles only in its vicinity. Information for far away obstacles
is also available, albeit less accurately. The proposed algorithm uses the fast lifting wavelet transform (FLWT) to
get a multiresolution cell decomposition of the environment, whose dimension is commensurate to the on-board
computational resources. A topological graph representation of the multiresolution cell decomposition is constructed
efficiently directly from the approximation and detail wavelet coefficients. A dynamic path planning is sequentially
executed for an optimal path by using theA∗ algorithm over the ensuing graph. The proposed path planning
algorithm is implemented on-line on a small autopilot. Hardware-in-the-loop simulation (HILS) results validate
the applicability of the algorithm on the actual system. Comparisons with the standardD∗-lite algorithm are also
presented.

I. I NTRODUCTION

Autonomous operation of UAVs requires both trajectory design (planning) and trajectory tracking (control)
tasks to be completely automated. Given the short response time scales of modern aerial vehicles, these are
challenging tasks using existing route optimizers. On-board, real-time path planning is particulary challenging
for small UAVs, which may not have the on-board computational capabilities (e.g. CPU and memory) to implement
some of the sophisticated path planning algorithms proposed in the literature. In most applications this problem is
bypassed by providing navigation way-points that have beencomputed either off-line, or on-line by a more capable
supervising/leader agent.

In a typical mission of a UAV, various sensors (e.g., cameras, radars, laser scanners, satellite imagery) having
different range and resolution characteristics are employed to collect information about the environment the vehicle
operates in. A computationally efficient path planning algorithm, specifically adopted for on-line implementation,
should therefore choose the expedient information from allthese sensors, and use the on-board computational
resources to design the part of the path (spatial and temporal) that needs it most. In a nutshell, a computationally
efficient algorithm suitable foron-line implementation should be characterized by a combination ofshort term
tactics (reaction to unforeseen threats) with long-term strategy (planning towards the ultimate goal).

Several multiresolution or hierarchical path planning algorithms have been proposed in the literature to alleviate
the computational burden associated with path planning over a complex, unstructured, or partially known environ-
ment [1]–[5]. Quadtree decompositions have been used to geta decomposition of the environment for path planning
purposes [6]–[9]. One drawback of quadtree-based decompositions is that a finer resolution is used close to the
boundaries of all obstacles, regardless of their distance from the agent. This tends to waste computational resources.

Recently, Tsiotras and Bakolas [10] proposed an efficient hierarchical path planning algorithm for autonomous
agents navigating in a partially known environmentW using an adaptive, discrete, cell-based approximation of
W. The innovation of their approach hinges on the use of distinct levels of fidelity (resolution) ofW at different
distances from the agent’s current position. A high resolution representation ofW is used close to the current
position of the agent (leading to a local solution with greataccuracy), while a low resolution representation is used
far away from the vehicle (thus incorporating the ultimate goal objective).

In this article, we assume a world environmentW ⊂ R
2 that includes the obstacle spaceO ⊂ W and the obstacle-

free configuration spaceF = W\O of all feasible states. We employ the wavelet transform to perform the required
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multiresolution decomposition ofW. The fast lifting wavelet transform (FLWT) offers a fast decomposition of a
function at different levels of resolution, which can be twice as fast as the classical wavelet transform1. Furthermore,
the FLWT can be implemented using the integer arithmetic, which reduces the computational cost dramatically.
This makes the FLWT especially suitable for processing using small micro-controllers. The use of FLWT has also
the added benefit of allowing the construction of the associated cell connectivity relationship directly from the
wavelet coefficients, thus eliminating the need for quadtreedecomposition, as in Ref. [10].

We employ the hierarchical path planning principle to find theoptimal path on the topological graphG induced
by the previous wavelet-based cell decomposition. Namely,the optimal path from an initial state to a final state
may contain mixed nodes across all resolution levels exceptat the finer resolution level, where the path is resolved
through feasible states only. Hierarchical path planning is known to be more flexible than other methods that search
only through free nodes [12].

In the sequel, we present a multiresolution hierarchical path planning algorithm, which is an extension of the
algorithm developed in Ref. [10], and deals with the connectivity relationship between cells of varying sizes. The
paper is organized as follows. In Section II we describe a multiresolution decomposition ofW using the 2D Haar
wavelet system. In Section III we present an efficient algorithm for constructing the adjacency list of a topological
graph by the direct use of the wavelet coefficients. The multiresolution hierarchical path planning algorithm is shown
in Section IV. Based on the hardware in-the-loop simulation (HILS) results in Section V, we discuss the advantages
and disadvantages of the proposed algorithm over a standarddynamic, incremental path planning algorithm used
in the literature.

II. A M ULTIRESOLUTION DECOMPOSITION OFW

A. The 2D wavelet transform

The idea behind the wavelet transform is to represent a functionf ∈ L2(R) via a linear combination of elementary
basis functionsφJ,k andψj,k as follows

f(x) =
∑

k∈Z

aJ,kφJ,k(x) +
∑

j≥J

∑

k∈Z

dj,kψj,k(x), (1)

where φJ,k(x) = 2J/2φ(2Jx − k) and ψj,k = 2j/2ψ(2jx − k). The choice ofJ determines the low resolution,
or the coarse approximation off , spanned by the scaling functionφJ,k(x). The rest ofL2(R) is spanned by the
wavelet functionsψj,k(x) which provide the higher, or finer resolution details of the function. In other words, when
analyzing the functionf at the coarsest level (low resolution), only the most salient features off will be revealed.
Adding finer levels (high resolution) implies adding more andmore details of the functionf . The expansion (1)
thus reveals the properties off at different levels of resolution [13], [14]. In addition, in the ideal case both the
scaling function and the wavelet function have compact support, that is they are non-zero only on a finite interval
so they can capture the localized features off .

The wavelet transform can be readily extended to the two-dimensional case by introducing the following families
of functions

Φj,k,`(x, y) = φj,k(x)φj,`(y), (2a)

Ψ1
j,k,`(x, y) = φj,k(x)ψj,`(y), (2b)

Ψ2
j,k,`(x, y) = ψj,k(x)φj,`(y), (2c)

Ψ3
j,k,`(x, y) = ψj,k(x)ψj,`(y). (2d)

Given a functionf ∈ L2(R2) we can then write

f(x, y) =
∑

k,`∈Z

aJ,k,`ΦJ,k,`(x, y) +
3

∑

i=1

∑

j≥J

∑

k,`∈Z

di
j,k,`Ψ

i
j,k,`(x, y) (3)

1The computational complexity of the lifting scheme is still of orderO(n) wheren is the input data [11], however, the computational
time may decrease by half according to wavelet basis.
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Fig. 1. A typical one-stage two-band filter banks used for implementing thediscrete wavelet transform.

where, for the case of orthonormal wavelets, the approximation coefficients are given by2

aj,k,` =

∫ ∞

−∞

∫ ∞

−∞

f(x, y)Φj,k,`(x, y) dxdy, (4)

and the detail coefficients by

di
j,k,` =

∫ ∞

−∞

∫ ∞

−∞

f(x, y)Ψi
j,k,`(x, y) dxdy. (5)

The key property of wavelets used in this paper is the fact thatthe expansion (3) induces the following multiresolution
decomposition ofL2(R2)

L2(R2) = VJ ⊕WJ ⊕WJ+1 ⊕ · · · , (6)

whereVJ = spank,`∈Z{ΦJ,k,`} andWj = spank,`∈Z{Ψ
1
j,k,`, Ψ

2
j,k,`, Ψ

3
j,k,`} for j ≥ J .

In this paper we use the Haar wavelet system for reasons that will become apparent shortly. The Haar scaling
function

φ(x) =

{

1 if x ∈ [0, 1),

0 otherwise,
(7)

and the Haar wavelet function

ψ(x) =











1 if x ∈ [0, 1/2),

−1 if x ∈ [1/2, 1),

0 otherwise,

(8)

have compact support on[0, 1]. Hence, each scaling functionφj,k(x) and wavelet functionψj,k(x) in the Haar

system has support on the dyadic intervalIj,k
4
= [k/2j , (k + 1)/2j ] of length 1/2j and does not vanish in this

interval [13], [15]. Subsequently, we may associate the two-dimensional scaling functionΦj,k,` and the wavelet

function Ψi
j,k,` (i = 1, 2, 3) with the rectangular cellcj

k,`

4
= Ij,k × Ij,`.

B. Fast lifting wavelet transform (FLWT)

Implementing the wavelet transform in practice requires dealing with a discrete signal. The basic step in a typical
discrete wavelet transform (DWT) involves the use of filter banks. Figure 1 shows a discrete signalan filtered by
two complementary high- and low-pass (decomposition) filters ḡ and h̄ before it is down-sampled. The results of
this operation are the next coarser approximation and detail coefficientsan−1 and dn−1, each containing half as
many samples as the input signalan. For the inverse transform, first the signalsan−1 and dn−1 are upsampled
by inserting zeroes between every sample. Subsequently, thetwo signals are filtered by the low- and high-pass
(reconstruction) filters̃g andh̃, respectively, and then added together. This sequence of operations results in perfect
reconstruction of the original signalan. Details of the filter bank implementation of wavelet transforms can be
found, for instance, in Refs. [16] and [17].

2In the more general case of biorthogonal wavelets projections on the space spanned by the dual wavelets and dual scaling functions
should be used in (4) and (5).
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The fast lifting wavelet scheme, originally introduced in Refs. [18] and [19], is a new method for building
wavelets directly in the time domain, thus avoiding the use of Fourier analysis. Moreover, the scheme can be
extended to construct the so-called second generation wavelets, which have certain benefits for handling boundary
effects, irregular samples, and arbitrary weight functions [17].

The typical lifting decomposition scheme is depicted in Fig. 2. The first block in this decomposition splits the
original signalan into two disjoint sets of samples containing the odd and the even indexed samples (Lazy wavelet).
Because the even and odd subsets are correlated to each otherlocally, each signal is lifted by the opposite signal
after passing through the corresponding operatorsP andU (the dual and primal lifting, or the prediction and update,
respectively). Finally, the results are normalized with theconstantska and kd, to end up with the approximation
and detail coefficients,an−1 anddn−1, respectively.

For the case of the unnormalized Haar transform, the dual lifting does nothing more but calculate the difference
of two signals

dn−1,k = an,2k+1 − an,2k, (9)

whereas the primal lifting calculates the coarser approximation coefficients having the same average value as the
original signal, by updating the even samples using the previously calculated detail signal as follows

an−1,k = an,2k + dn−1,k/2. (10)

It has been proved that all classical wavelet transforms canbe implemented using the lifting scheme [20]. Most
interestingly, the inverse transform is readily found by reversing the order of the operations and by flipping the
signs.

The lifting scheme has a number of algorithmic advantages, such as faster computation speed (twice as fast as the
usual discrete wavelet transform),in-place calculation of the coefficients (that saves memory), immediate inverse
transform, generality for extension to irregular problems, etc. In particular, the lifting scheme is applicable to many
applications where the input data consists of integer samples. Unlike the typical wavelet transform where floating
number arithmetic is implicitly assumed, the lifting scheme can be easily modified to map integers to integers, and
is readily reversible to allow perfect reconstruction [21]. This reconstruction is possible by adopting the sequential
transform by modifying Eq. (10) as follows [22]

dn−1,k = an,2k+1 − an,2k,

an−1,k = an,2k + bdn−1,k/2c,
(11)

where,b·c is the rounding operator. In the sequel, we use the fast lifting Haar transform for two-dimensional signals
of integer samples using a sequential 2D scheme; that is, we perform two one-dimensional transforms through the
rows and then columns of the input data.
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C. Wavelet decomposition of the risk measure

Without loss of generality, we letW = [0, 1]× [0, 1], which is described using a discrete (fine) grid of2N ×2N

dyadic points. The finest level of resolutionJmax is therefore bounded byN . It follows from Eq. (3) and the
accompanying discussion that the Haar wavelet decomposition at resolution levelJ ≥ Jmin, given by

f(x, y) =
2J−1
∑

k,`=0

aJ,k,`ΦJ,k,`(x, y) +
3

∑

i=1

N−1
∑

j=J

2j−1
∑

k,`=0

di
j,k,`Ψ

i
j,k,`(x, y), (12)

and it induces a cell decomposition ofW of square cells of maximum size1/2J × 1/2J .
Assume now that we are given a functionrm : W 7→ M that represents the “risk measure” at the location

x = (x, y), whereM is a collection ofm integer distinct risk measure levels defined by

M , {Mi : M1 < M2 < · · · < Mm}. (13)

The obstacle spaceO is defined as the space where the risk measure values exceed a certain thresholdM , that is,

O = {x ∈ W | rm(x) > M, M ∈ M}. (14)

For x ∈ F , we may think ofrm(x) as an indication of the proximity of the agent to the obstaclespace or the
probability thatx ∈ O.

We construct approximations ofW at distinct levels of resolutionJmin ≤ j ≤ Jmax at rangesrj from the current
location of the agentx0 = (x0, y0), in the sense that the resolutionj is used for all points inside the neighborhood

N (x0, rj) , {x ∈ W : ‖x − x0‖∞ ≤ rj}. (15)

whererJmax
≤ rj ≤ rJmin

. By this, we imply that the finer resolutionJmax is used for points close to the current
location, and coarser resolutions at different levels are used elsewhere, according to the distance from the current
location. Hence, the representation ofW gets coarser further away from the current location. Figure 3illustrates
this situation. The choice ofJmax is determined by the requirement that at this level all cellscan be resolved
into either free or obstacle cells. The choice ofJmin as well as the window spanrj are dictated by the on-board
computational resources.

Let now I(j) , {0, 1, 3, · · · , 2j − 1} and let

K(j) , {k ∈ I(j) | Ij,k ∩ [x0 − rj , x0 + rj ] 6= ∅}, (16a)

L(j) , {` ∈ I(j) | Ij,` ∩ [y0 − rj , y0 + rj ] 6= ∅}. (16b)

Then the wavelet decomposition ofrm, given by

rm(x, y) =
∑

k,`∈I(Jmin)

aJmin,k,`ΦJmin,k,`(x, y) +
3

∑

i=1

Jmax−1
∑

j=Jmin

∑

k∈K(j)

`∈L(j)

di
j,k,`Ψ

i
j,k,`(x, y),

(17)

induces, with a slight abuse of notation, the following multiresolution cell decomposition onW

Cd = ∆CJmin

d ⊕ · · · ⊕ ∆CJmax

d , (18)

where,∆Cj
d is a union of cellscj

k,` of dimension1/2j × 1/2j .

III. M ULTIRESOLUTION GRAPH CONNECTIVITY

A. Computation of Adjacency List from the FLWT

In the previous section we described the construction of a multiresolution cell decompositionCd in (18) of W
using the FLWT. We now assign a topological graphG = (V, E) to Cd as follows. The nodes ofG represent the
cells cj

k,` in Cd and the edges represent the connectivity relationship between those nodes. In this section we show
that the connectivity of the graphG can be constructed directly from the wavelet coefficients. Equivalently, we
compute the adjacency list ofG directly from wavelet coefficients obtained from the FLWT.
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Fig. 3. Multiresolution representation of the environment according to the distance from the current location of the agent.

As the scaling functionΦj,k,` and the wavelet functionsΨi
j,k,` (i = 1, 2, 3) of the 2D Haar wavelet are associated

with square cellscj
k,`, the corresponding approximation and nonzero detail coefficients encode the necessary

information regarding the cell geometry (size and location). Recall that the approximation coefficients are the
average values of the risk measure values over the cells, andthe detail coefficients determine the size of each cell.
To this end, consider a cellcj0

k,` at level j0, whose dimension is1/2j0 × 1/2j0 and is located at(k, `). A cell will
be calledindependentif it is associated with a non-zero approximation coefficientaj0,k,`, while the corresponding
detail coefficientsdi

j,k,` (i = 1, 2, 3) at level j0 ≤ j ≤ Jmax are all zero. Otherwise, the cell is marked as aparent
cell, and is subdivided into fourleaf cells at levelj0 + 1. If a leaf cell cannot be subdivided further, it is classified
as an independent cell. In Fig. 4, the top-most parent cellcj0

k,` is subdivided into three independent cells at level
j0 + 1 with each non-zero approximation coefficient in the quadrantI, II, and III (all zero detail coefficients). For
quadrant IV, the cell is further subdivided into four independent leaf cells at levelj0 + 2.

Assume now that we are given the Haar wavelet transform of therisk measure functionrm up to the level
Jmin. The coarsest level of the cell dimension is set toJmin. In Fig. 5 the initial coarse grid is drawn on the left.
The agent is located atx = (x, y) and the high resolution horizon is given byr. Recalling expressions (15), we
distinguish cells at distinct resolution levels, by starting from a coarse cellcj0

k,`, and by determining if the cell either

partially intersects or totally belongs to the setN (x, r). The cellcj0
k,` is easily ascertained to satisfy this property

by choosing the indices such that(k, `) ∈ (K(j0),L(j0)). If the cell needs to be subdivided into higher resolution
cells, the inverse fast lifting wavelet transform is first performed on the current cell (local reconstruction) in order to
recover the four approximation coefficients at levelj0 + 1 and the corresponding detail coefficients. We then adopt
the raster scan method [23] (zigzag search: I→II→III→IV) to examine each cell inside the parent cell overlapping
with N (x, r). This procedure is recursively repeated until the maximum resolution levelJmax is reached. Figure 5
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Fig. 4. Multiresolution cell subdivision across different levels.
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Fig. 5. Recursive raster scan method for identifying independent cells.

illustrates the recursive raster scan search. Once a cell isrecognized as independent, we assign a node in the graph
G with the node cost being the approximation coefficient representing the average risk measure over the cell. In
addition, the detail coefficients associated with the current cell are all set to zero; this will provide the necessary
connectivity information between the cells later on.

After a cell has been identified as an independent cell, we search the adjacent cells in order to establish the
adjacency relationship with the current cell. Recall that two cellsci andcj are adjacent if

∂ci ∩ ∂cj 6= ∅, i 6= j,

where∂ci denotes the boundary of the cellci. For our case of square cells, this implies that two cells areadjacent
only along the following eight directions: Left, top, right,bottom, and the four diagonal directions. Following the
recursive raster search for cell identification, the adjacency search requires establishing links between two cells
that have been identified as independent cells. Recalling that the raster search progresses from left to right and
from top to down (zigzag progress) as illustrated in Fig. 5, weconfine the adjacency search to the following
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I II

III IV

Fig. 6. Basic connectivity properties with respect to the location of the leaf cell.

directions: Left, top-left, top, and top-right from the current cell. By doing this, we render half of the links (out
of eight connectivity) to be connected from the current cell, and the remaining links with the current cell will
be connected as the recursive raster scan progresses to the next cells. In addition, because we deal with cells of
different dimensions, it is required to devise a generic method to find the adjacency relationship between the cells.

Figure 6 illustrates the basic search direction of each leaf cell inside a parent cell. The dashed arrow points
towards an external search region, that is, an adjacent cellcould be found beyond the parent cell, whereas the solid
arrow points towards an internal search region that belongsto the parent cell. In each search, we implicitly assume
that the level of adjacent cells may vary from that of the parent cell to Jmax (external connection), or from that of
the current cell toJmax (internal connection).

A leaf cell inherits the search region from its parent cells,whose search direction turns out to be one of the solid
arrows in Fig. 6. Figure 7 shows this inheritance property. In Fig. 7 the current cell is chosen to becj0+2

I . This
cell is a leaf cell of the parent cellcj0+1

IV , which further becomes a leaf cell of the top-most parent cell cj0
k,l. The

cell cj0+1
IV is located on the fourth quadrant inside the top-most parentcell cj0

k,l so that the search region forcj0+1
IV

ends up with the internal searches at the levelj0 +1, whose adjacency search property is inherited to the cellcj0+2
I

for left, top-left, and top direction searches. Having ascertained the basic search directions, we refine the adjacent
search looking for opposite cells which must be independentand adjacent to the current cell. Because the opposite
cells of the current cell could have different dimensions, as depicted in Fig. 7, we establish links by examining the
associated detail coefficients of the opposite cells. Along the left search direction ofcj0+2

I , as illustrated in Fig. 7,
one finds that only one independent cell at levelj0 + 1 is linked tocj0+2

I .
The adjacency search algorithm refines its search to the higherlevels if the opposite cell is not an independent

cell, that is, if it is comprised of finer cells. This refinement subsequently forces a search of cells of the finer
dimension (level) which are neighboring to the current cell. Subsequently, the detail coefficients of the opposite
cells are examined in order to find the next finer cell that is adjacent to the current cell. For the top-left search
direction of cj0+2

I , as illustrated in Fig. 8(a), the search process initially examines the cellcj0+1
I located at the

top-left corner of the current cell through the corresponding detail coefficient. Provided that the detail coefficient
associated with the cellcj0+1

I takes a non-zero value, the cell is assumed to be not an independent cell. Subsequently,
the cellcj0+1

I is subdivided and the search process repeats at levelj0 + 2 when the opposite cell to the current cell
becomes an independent adjacent cell. In Fig. 8(a), since there exists no other independent cells along the top-left
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Fig. 7. Searching an adjacent cell along the left search direction.

direction except the shaded one, a bidirectional link is established between the current and the opposite cells.
Similarly, for the top search direction, two cells at levelj0 +3 and one at levelj0 +2 are found to be independent

and adjacent to the current cell. The bidirectional links areaccordingly connected from the current cellcj0+2
I to those

adjacent cells. Figure 8(b) depicts this situation. Finally,Fig. 9 shows an example of the graph structure obtained
from the multiresolution cell decomposition associated with the wavelet coefficients. Without loss of generality the
nodes are located at the center of each cell. The solid lines show the connectivity relationship between the cells.

B. Cost assignment forA∗ search

The A∗ algorithm is a graph search algorithm that finds a path from an initial node to the goal node in the
graph. The algorithm utilizes aheuristic estimateh(v) that ranks each nodev by a best cost estimate to reach the
goal from the current node [24]. The algorithm visits the nodes in the order of the heuristic estimate, so theA∗

algorithm is known as a best-first search algorithm. The key element of theA∗ algorithm is that it expands each
node from the priority queue that is ordered by (lower value has higher priority)

f(v) = g(v) + h(v), (19)

where the costg(v) is the actual cost of the path up tov, i.e. the sum of the edge costs from the initial node,
and h(v) is the heuristic estimate atv. When a nodeu is expanded, the adjacent nodes to the current node are
exploited. Letv be the adjacent node, then it follows that we evaluate the actual costg(v) to see if the transition
from u to v results in lower cost than any other transitions tov. The algorithm then sets a back-pointerπ(v) by
its preceding nodeu. This process iterates until the goal node is reached and no other nodes have a lower cost to
the goal.

TheA∗ algorithm is complete in the sense that it is always guaranteed to find a solution if a solution exists. In
addition, if the heuristic functionh(v) is admissible, that is, it uses an underestimate of the actual cost of reaching
the goal, thenA∗ is optimal. Details about the implementation of theA∗ algorithm can be found, for instance, in
Ref. [25].

To the cell decomposition (18) we associate each nodev ∈ G to a cell cj
k,`. Moreover, sinceG is a topological

graph, we may associate each nodev with some pointx ∈ cj
k,`. Without loss of generality, we choose the center

of the cell. LetcellG(v) denote the center of the corresponding cell. Ifx ∈ cj
k,` we will write v = nodeG(x).
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Fig. 8. Refined adjacency search algorithm.

Fig. 9. Connectivity relationship constructed from the multiresolution cell decomposition over three levels.

To each directed edge(u, v) of G we assign an edge cost, given as

J (u, v) = rm(cellG(v)) + α‖cellG(u) − cellG(v)‖2, (20)

whereα ≥ 0 is a weight constant. The first term in (20) is proportional to the probability that the target node is
close to an obstacle, while the second term penalizes the (Euclidean) distance betweencellG(u) andcellG(v).

Suppose now that we are given a path ofq + 1 consecutive, adjacent nodes inG as follows

P = (v0, v1, · · · , vq). (21)

We can then assign a traverse cost to each node in the pathP, induced by

g(vi) = g(vi−1) + J (vi−1, vi), i = 1, · · · , q. (22)
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The value ofg(vk) represents the (accumulated) cost of the path fromv0 to vk (k ≤ q), i.e. the weight of the edges
followed up tovk. We use the following heuristic estimate

h(v) = ‖cellG(v) − cellG(vf )‖∞, (23)

wherevf = nodeG(xf ).
TheA∗ algorithm then finds a path that minimizes the cost in (22) to the final node, or determines that such a

path does not exist.

IV. M ULTIRESOLUTION PATH PLANNING

A. Multiresolution path planning algorithm

The proposed multiresolution path planning algorithm proceeds as follows. Starting fromx(t0) = x0 at time
t = t0, we construct using the approach of Section II a cell decomposition Cd(t0) of W. A topological graph,
and the adjacency list of its nodes are obtained using the approach of Section III. Let the corresponding graph
be G(t0) and letv0

1 ∈ G(t0) and v0
f ∈ G(t0) be the initial and the goal nodes such thatv0

1 = nodeG(t0)(x0) and
v0
f = nodeG(t0)(xf ), respectively. Using theA∗ algorithm we compute a pathP(t0) in G(t0) of free and mixed

nodes fromv0
1 to v0

f assuming that such a path exists. LetP(t0) be given by an ordered sequence ofl0 + 1 nodes
as follows

P(t0) = (v0
0, v0

1, · · · , v0
l0−1, v0

l0 = v0
f ). (24)

It is assumed thatv0
1 is a free node owing to the high resolution representation ofW close tox0. The agent

subsequently moves fromv0
0 to v0

1. Let now t1 be the time the agent is at the locationx(t1) = cellG(t0)(v
0
1) and

let Cd(t1) be the multiresolution cell decomposition ofW aroundx(t1) with a corresponding topological graph
G(t1). Applying again theA∗ algorithm we compute a (perhaps new) path inG(t1) from v1

0 = nodeG(t1)(x(t1)) to
v1
f = nodeG(t1)(xf ) if such a path exists. LetP(t1) be given by the ordered sequence ofl1 + 1 nodes as follows

P(t0) = (v1
0, v1

1, · · · , v1
l1−1, v1

l1 = v1
f ). (25)

The agent subsequently moves tov1
1 at locationx(t2) = cellG(t1)(v

1
1) at time t2.

In general, assume the agent is at locationx(ti) at time ti. We construct a multiresolution decompositionCd(ti)
of W aroundx(ti) with a corresponding graphG(ti). TheA∗ algorithm yields a pathP(ti) in G(ti) of lengthli +1,

P(ti) = (vi
0, vi

1, · · · , vi
li−1, vi

li = vi
f ), (26)

where vi
0 = nodeG(ti)(x(ti)) and vi

f = nodeG(ti)(xf ) if such a path exists. This iteration process terminates at
some timetf when‖x(tf ) − xf‖∞ < 1/2Jmax . At the last step the agent moves fromx(tf ) to xf . A pseudo code
implementation of the multiresolution path planning algorithm is given in Fig. 10. Note that the actual path followed
by the agent is given by the sequence of nodes

{

nodeG(t0)

(

x(t0)
)

, nodeG(t1)

(

x(t1)
)

, · · · , nodeG(tf )

(

x(tf )
)}

.

B. D∗ lite path planning algorithm

TheD∗ algorithm has been originally proposed by Stentz [26], [27] for planning a path in unknown or partially
known environments. Prior toD∗, several replanning strategies have been proposed to solvedynamic planning
problems for locally-directed wandering [28], local modification of initial path [29], and obstacle perimeter detouring
[30]. Although these methods are complete, they are suboptimal and computationally inefficient. On the contrary,
D∗ produces an optimal path by adopting an efficient incrementalsearch to reduce the time required to replan.
In particular,D∗ is more appropriate when dealing with an environment havinga large number of states, reusing
information from the previous search to find the solution at the next step. Koenig and Likhachev introduced Lifelong
PlanningA∗ (LPA) [31] which employs heuristic estimate likeA∗, while reusing information from previous searches
to find a solution much faster than solving each iteration fromscratch. Furthermore, Koenig and Likhachev presented
the D∗-lite algorithm, derived from the LPA algorithm, which implements the same planning strategy asD∗ but
is algorithmically different. TheD∗-lite algorithm simplifies the maintenance of priority queues, thus it does not
use complicated conditional statements, thus ending up with shorter codes than the originalD∗ algorithm. In the
sequel, we employ theD∗-lite algorithm to the path planning problem on a non-trivial environment. By comparing
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BEGIN PATH PLANNING ALGORITHM
{

i = 0;
x(ti) ← x0;
while ‖x(ti) − xf‖ ≥ 1/2Jmax

{
compute rm(x, i) for all x ∈ W;
construct Cd(i) at level Jmin;
construct G(i) =

(

E(i), V (i)
)

;
vi
1 ← nodeG(i)

(

x(ti)
)

;
vi
f ← nodeG(i)(xf );
P(i) ← Astar

(

vi
1, v

i
f ,G(i)

)

;
if P(i) = ∅

report FAILURE; break;
x(ti+1) ← cellG(i)(v

i
2);

Move to x(ti+1);
i ← i + 1;

}
}
END PATH PLANNING ALGORITHM

Fig. 10. Pseudo-code implementation of proposed multiresolution path planning scheme.

the D∗-lite algorithm with the multiresolution path planning algorithm, we discuss the benefits and shortfalls of
using the multiresolution path planning algorithm over theD∗-lite algorithm.

We apply the Haar wavelet transform up to resolution levelJ ≥ Jmin to obtain the wavelet decomposition of
rm, given by

rm(x, y) =
2J−1
∑

k,`=0

aJ,k,`ΦJ,k,`(x, y) +
3

∑

i=1

N−1
∑

j=J

2j−1
∑

k,`=0

di
j,k,`Ψ

i
j,k,`(x, y). (27)

A uniform cell decompositionCJ
d at level J on W is induced from Eq. (27), and is comprised of cellscJ

k,` of
dimension1/2J×1/2J . We adopt the eight-connectivity relationship between thecells. The connectivity relationship
is easily found by bookkeeping the location of each cell through the indicesk and `. It should be noted that the
adjacency relationship will remain the same throughout thereplanning, but the edge costs will change incrementally
to incorporate the information from the previous step.

Suppose the agent is equipped only with a proximity sensor that senses the environment close to the current
location with high accuracy. That is, the sensor provides information classifying the neighboring environment into
a free region or obstacle region. LetS(i) be the known region up tot = ti using a sensor with the rangerJ ,
defined by

S(i) = S(i − 1) ∪N (xi, rJ) (28)

wherexi is the current location of the agent att = ti andN (xi, rJ) represents the effective sensory region at that
moment. In Eq. (28) it is assumed that the agent navigates an initially unknown environment while updating the
map from the collected information. In order to take this process into consideration for replanning, we assign a
conditional cost to each edge(u, v) which depends on the relative location of the edges toS as follows,

J (u, v) =

{

rm(cellG(v)) + ‖cellG(u) − cellG(v)‖2, if u, v ∈ S,

‖cellG(u) − cellG(v)‖2, if u, v ∈ W \ S.
(29)

It follows that for the edges outsideS we simply impose the traversal cost between nodes owing to the uniform size
of cells. If this is the case, a general path planning algorithm such as Dijkstra’s orA∗ simply computes a shortest
path from an initial node to the goal node which might pass through obstacles outsideS. Nevertheless, whenever
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BEGIN D∗ LITE PATH REPLANNING ALGORITHM
{

i = 0;
compute rm(x) for all x ∈ W;
construct Cd at level Jmax;
construct G =

(

E, V
)

;
vstart ← nodeG(x0);
vgoal ← nodeG(xf ) ;
Initialize();
ComputeShortestPath(vstart, vgoal,G);
vi ← vstart;
vlast ← vi;
while (vi 6= vgoal)
{

i ← i + 1;
vi = argminv′∈Adj(vlast)

(

J (vlast, v
′) + g(v′)

)

;

Move to vi;
Scan graph for changed edge costs;
If any edge costs changed;
{

km ← km + h(vlast, vi);
vlast ← vi;
For all directed edges (u, v) ∈ E with changed edge costs
{

Update the edge cost J (u, v);
UpdateVertex(v);

}
ComputeShortestPath(vi, vgoal,G);

}
}

}
END D∗ LITE PATH REPLANNING ALGORITHM

Fig. 11. Pseudo-code implementation ofD
∗ lite path planning scheme.

the map is updated using contingent information from the sensor, we accordingly update the corresponding edge
costs by appending the obstacle cost to each edge as given in (29).

The mainD∗-lite path planning algorithm proceeds as follows. From the uniform cell decomposition and the
corresponding graph, we solve for an initial path fromv0 = vstart to vgoal assuming only the distance cost for edge
weights. Letv1 be the node next tov0 in the path. The agent subsequently moves fromv0 to v1. At time t = t1
when the agent is located atv1, the algorithm continues to scan the graph for changed edge costs. If any edge costs
have changed, then the algorithm updates the correspondingedge weights. Finally, a new path is computed from
v1 to vgoal, while incorporating the updated edge weights. It should benoted that if no edge costs have changed
the agent moves to the successive nodev′ in the previous path that has the minimum costJ (vlast, v

′) + g(v′).
Similar to A∗, theD∗-lite algorithm also incorporates a heuristic estimate to choose the nodes from a priority

queue. However, as the agent detects changes in the edge costs, the priority queue is reordered to render itself
consistent. This might be an expensive task, so instead of reordering the priority queue every time, Koenig and
Likhachev utilizes adynamic heuristic constantkm [32] to keep the priority queue unaltered regardless of the
change of the edge costs. The iteration terminates at some time tl when the goal node is reached. A pseudo code
implementation of theD∗ lite incremental path planning algorithm is given in Fig. 10.Note that the actual path
followed by the agent is given by the sequence of nodes

{

v0 = vstart, v1, · · · , vl−1, vl = vgoal

}

.
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V. HARDWARE IN-THE-LOOP SIMULATION RESULTS

A. Hardware overview

A UAV platform based on the airframe of an off-the-shelf R/C model airplane has been developed to implement
the multiresolution, wavelet-based path planning algorithm described above. The development of the hardware and
software was done completely in-house to have a full access of the entire system. The on-board autopilot is equipped
with a micro-controller, sensors and actuators, along withthe communication devices that allow full functionality
for autonomous control. The micro-controller (Rabbit RCM-3400 running at 30 MHz with 512 KB RAM) provides
data acquisition, processing, and communication with the ground station. It also runs the low-level control loops
for basic stabilization and way-point navigation. The on-board sensors include angular rate sensors for three axes,
accelerometers along all three axes, a three-axis magneticcompass, a GPS sensor, and absolute and differential
pressure sensors. Figure 12 shows the UAV platform with the on-board autopilot.
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Fig. 12. A small fixed-wing UAV equipped with an autopilot for hierarchical path planning control.

A realistic hardware-in-the-loop simulation (HILS) environment has also been developed to validate the UAV
autopilot hardware and software development utilizing Matlabr and Simulinkr. A full 6-DOF nonlinear aircraft
model is used in conjunction with a linear approximation of the aerodynamic forces and moments, along with
Earth gravitational (WGS-84) and magnetic field models. Detailed models for the sensors and actuators have also
been incorporated. Four independent computer systems are used in the hardware-in-the-loop simulation (HILS) as
illustrated in Fig. 13. A 6-DOF simulator, the flight visualization computer, the autopilot micro-controller, and the
ground station computer console are involved in the simulation. Further details about the UAV platform, autopilot
and HILS set-up can be found in [33], [34] and [35].
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Fig. 13. High fidelity hardware-in-the-loop simulation (HILS) environment that enables rapid testing of the proposed path planning algorithm.

B. Simulation results for the proposed algorithm

In this section we present simulation results of the proposed algorithm for a non-trivial scenario. The environment
W is an actual topographic (elevation) map of a certain US state with fractal-like characteristics, shown in Fig. 14.
The environment is assumed to be square of dimension 128×128 units. Hence the finest possible resolution is
N = 7. Taking into account the available memory of the micro-controller, we choose the fine level asJmax = 6
and the coarse level asJmin = 3. This makes the total number of nodes in the graph not exceed the maximum
count of 256 that corresponds to the maximum allowable variable size of the micro-controller. The ranges from the
current location at distinct levels of resolution are selected as follows,

(r6, r5, r4) = (8, 15, 30) in units,

which dictates that the higher resolution representationsaround the current location of the agent are used inside an
area of60 × 60 unit cells at levelJ = 4 down to an area of16 × 16 unit cells at the finest levelJmax = 6.

The objective of the UAV is to follow a path from the initial position to the final position while circumventing
the obstacles over a certain elevation threshold. Since the on-line path planning problem at the finest resolution
is computationally prohibitive, the proposed algorithm accommodates the need for the on-line implementation on
the micro-controller by limiting the amount of the information to process, thus computing an immediate path with
high accuracy within the allowable time scale of the micro-controller.

The results from the multiresolution path planning algorithm are shown in Fig. 14. Specifically, Fig. 14 shows
the evolution of the path at different time steps as the agentmoves to the final destination. Figure 14(a) shows the
agent’s position at time stept = t5 along with the best proposed path to the final destination by a dashed-dot line
at that time. Similarly, Fig. 14(b) shows the agent’s positionat time stept = t21. As seen in Fig. 14(c), the actual
path followed by the agent differs from the one predicted in either Figs. 14(a) or 14(b). This is due to the fact that
at time t5 and t21 the agent does not have complete information for upcoming positions up to confident level. In
particular, as the agent gets closer to the obstacle as shownin Fig. 14(b), it recognizes the presence of obstacles
and redirects the path to avoid any obstacles. The agent reaches the final destinationxf in a collision free manner,
as seen in Fig. 14(c).

C. Simulation results for theD∗-lite algorithm

In this section we present simulation results of theD∗-lite path planning algorithm for the same environment
used in the previous section. It is assumed that the agent navigates over the unknown environment, while updating
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TABLE I
COMPUTATIONAL COST OF THE PROPOSED ALGORITHM BY THE ON-BOARD AUTOPILOT.

Multiresolution cell decomposition using FLWT 452 [msec]
Construct the connectivity relationship andG 292 [msec]
Compute a path usingA∗ employing the binary heap 202 [msec]
Average number of nodes of eachG ∼200

the map with the information gathered from a proximity sensor. We adopt a uniform cell decomposition of cell
size theJmax = 6 which is the same as the finest level of the previous section. Therange of the proximity sensor
is chosen to ber6 = 7, thus resulting in the high resolution window by a 7 by 7 square grids.

The results from theD∗-lite path planning algorithm are shown in Fig. 15. Specifically, Fig. 15 shows the
evolution of the path at different time steps as the agent moves to the final destination. At each step, the best
proposed path is drawn by a dashed-dot line and the actual path followed by the agent is drawn by a solid line. As
seen in Fig. 15(c), the actual path differs significantly from the one predicted in either Figs. 15(a) or 15(b). This
is attributed to the fact that the environment is unknown a priori, and the path is computed using the distance cost
outside the high resolution area. Hence, as shown in Fig. 15(a), the agent is unable to anticipate the existence of
the obstacles outside the high resolution area. Nonetheless, as the agent gets closer to the obstacles, theD∗-lite
algorithm effectively replans the entire path circumventing the obstacles, reaching the final destination.

VI. COMPARISON

The proposed multiresolution path planning algorithm was written in C code and implemented on the on-
board autopilot equipped with a Rabbit RCM-3400 micro-controller. Because the micro-controller has limited
computational resources (10,000 instructions per second,and 512 KB RAM for handling variables), the code has
been written giving special attention not only to the accuracy of the output, but also to the computational speed
during implementation. Specifically, most of the computations for the proposed algorithm is done using integer
arithmetic. Given a risk measurerm of integer samples, the integer fast lifting wavelet transform provides the
approximation and detail coefficients that are used to construct the adjacency relationship between cells. TheA∗

algorithm is then called to find the shortest path in this graph.
Table I shows the computational cost of the proposed path planning algorithm using the on-board autopilot. One

step of the path planning iteration takes 946 [msec] for execution. Ascertaining the execution time of the proposed
algorithm, we actually choose to implement the proposed path planning algorithm on-line in every three second.
Hence, the autopilot manages not only to execute the basic tasks such as data acquisition and processing, inner
loops control, and etc., but also to plan a path in a seamless manner.

We compared the computational costs between the proposed multiresolution path planning algorithm and theD∗-
lite algorithm, using different simulation results for several cases. The simulations were carried out on an IBM-PC
(Pentium M 2.0 GHz, 1 GB RAM), based on codes written in C for implementing both path planning algorithms.
The proposed path planning algorithm accomplishes the path planning objective of reaching the goal in less number
of iterations, as shown in Tab. II, than theD∗-lite algorithm. This is due to the fact that the proposed algorithm
effectively manages the information at coarse resolutionsso as to compute a preferred path. TheD∗-lite algorithm,
however, relies on the information at finer resolution that isunveiled up to the current time, thus requiring the agent
to explore the environment and to replan the path along the movement of the agent. In the worst case, the total
number of iterations by theD∗-lite algorithm increases significantly (e.g. Scenario IV) because of the existence of
unknown obstacles.

The total computation time of the proposed algorithm is obtained by adding the computation times throughout
each iteration. For theD∗-lite algorithm, the total computation time consists of thetime for initializing and updating,
which is shown to be smaller than that of the proposed algorithm. TheD∗-lite algorithm is computationally efficient
in the sense that it reuses information from the previous step. Most of the computations in the proposed algorithm
are devoted to the construction of the adjacency list at eachplanning step, as shown in Tab. II. The performance of
the proposed algorithm can thus be improved by using, say, four-connectivity instead of eight-connectivity during
the adjacency search algorithm. This will possibly halve thecomputation time with little performance degradation.
On the other hand, the proposed algorithm requires little memory as shown in Tab. II compared toD∗-lite. For
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TABLE II
THE COMPUTATIONAL COST COMPARISON BETWEEN THE MULTIRESOLUTION PATH PLANNING V/S THED∗ LITE .

Items Scenario I Scenario II Scenario III Scenario IV Scenario V
D

∗-lite Wavelet D
∗-lite Wavelet D

∗-lite Wavelet D
∗-lite Wavelet D

∗-lite Wavelet
# iteration 35 31 93 50 61 40 123 52 44 43
# nodes inG 4096 201 4096 194 4096 192 4096 185 4096 194
Data processing [msec] 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03
Adjacency search [msec] - 0.977 - 0.987 - 0.969 - 0.94 - 0.958
A

∗ search [msec] - 0.1 - 0.125 - 0.094 - 0.138 - 0.066
Init. D∗-lite search [msec] 1.87 - 2.03 - 2.03 - 1.87 - 2.03 -
D

∗-lite update [msec] 4.1 - 23.8 - 11.3 - 43.9 - 12.7 -
Total Comp. time [msec] 5.97 33.387 25.83 55.6 13.33 42.53 45.77 56.056 14.73 44.032
Computational cost (%) 17.8 100 46.46 100 31.35 100 81.65 100 33.45 100
Memory cost (%) 2037.8 100 2111.3 100 2133.3 100 2214.1 100 2111.3 100

on-line, on-board path planning, the proposed algorithm has the advantages of scalability according to the available
on-board computational resources.

VII. C ONCLUSIONS

Autonomous path planning for small UAVs imposes severe restrictions on control algorithm development, stem-
ming from the limitations imposed by the on-board hardware and the requirement for on-line implementation. In
this work we have proposed a method to overcome this problem by using a new hierarchical, multiresolution path
planning scheme. The algorithm computes at each step a multiresolution representation of the environment using
the wavelet transform. The idea is to employ high resolution close to the agent where is needed most, and a coarse
resolution at large distances from the current location of the agent. As an added benefit, the connectivity relationship
of the resulting cell decomposition can be computed directly from the nonzero detail coefficients of the wavelet
transform. The algorithm is scalable and can be tailored to the available computational resources of the agent.
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18

[16] Donoho, D. L., “Smooth Wavelet Decompositions with Blocky Coefficient Kernels,”Recent Advances in Wavelet Analysis, Academic
Press, 1993, pp. 1–43.
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Fig. 14. Path evolution and replanning. Figures on the left show the currently tentative optimal path obtained from theA∗ algorithm, based
on the available multiresolution approximation of the environment at different time steps. Figures on the right show the actual path followed
by the agent.
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(a) t = t14
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(b) t = t30
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(c) t = t53

Fig. 15. Path evolution and replanning usingD∗-lite algorithm. Figures on the left show the currently tentative optimal path obtained from
theD

∗-lite algorithm, based on the distance cost outside the high resolution area. Figures on the right show the actual path followed by the
agent.


